Advertisement

Journal of Comparative Physiology B

, Volume 187, Issue 1, pp 51–61 | Cite as

Effects of thermal stress on the immune and oxidative stress responses of juvenile sea cucumber Holothuria scabra

  • Elham Kamyab
  • Holger Kühnhold
  • Sara C. Novais
  • Luís M. F. Alves
  • Lisa Indriana
  • Andreas Kunzmann
  • Matthew Slater
  • Marco F. L. Lemos
Original Paper

Abstract

Holothuria scabra is the most valued and cultured tropical sea cucumber, given the great demand of this species for human consumption. However, despite its ecological and economic relevance, little is known regarding its immune responses under thermal stress. Here, the main goal was to study the response of sea cucumbers to temperature stress, assessing sub-organismal alterations and acclimation capacities of juveniles to temperature changes. After changing temperature (1 °C/day) for 6 days, organisms were exposed to temperature conditions of 21 °C (cold), 27 °C (control), and 33 °C (warm) over a 30 day period. At each 15-day interval (T0, T15, and T30), six replicates per condition were killed for biochemical analysis. Immune responses were addressed by studying the activity of phenoloxidase (PO) and prophenoloxidase (ProPO) in the coelomic fluid. Antioxidant defence responses—catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) enzymatic activities—were measured in the muscle and respiratory tree tissues, whereas oxidative damage was evaluated by measuring levels of superoxide radicals (ROS), DNA-strand breaks and lipid peroxidation (LPO). Juvenile H. scabra increased SOD and PO activities when temperature was elevated, and revealed low levels of ROS and damage in both cold and warm treatments throughout the experiment, confirming the organism’s moderate thermal stress. After the short acclimation period, the immune and antioxidant responses prevented damage and maintained homeostasis. This multi-biomarker approach highlights its usefulness to monitor the health of H. scabra and to gain insight concerning the use of this high-valued species in global-scale aquaculture from different temperature regions.

Keywords

Biomarkers Tropical aquaculture Climate change Environmental stress Antioxidant responses Acclimation 

Notes

Acknowledgments

This study had the support of the Fundação para a Ciência e a Tecnologia (FCT) Strategic Project UID/MAR/04292/2013 granted to MARE, and from an FCT and Deutscher Akademischer Austauschdienst (DAAD) program for bilateral cooperation funding. Sara Novais was supported by Fundação para a Ciência e Tecnologia through the research Grant SFRH/BPD/94500/2013.

Supplementary material

360_2016_1015_MOESM1_ESM.docx (133 kb)
Supplementary material 1 (DOCX 132 kb)

References

  1. Alves LMF, Nunes M, Marchand P, Le Bizec B, Mendes SL, Correia J, Lemos MFL, Novais SC (2016) Blue sharks (Prionace glauca) as bioindicators of pollution and health in the Atlantic Ocean: Contamination levels and biochemical stress responses. Sci Total Environ 563–564:282–292CrossRefPubMedGoogle Scholar
  2. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–7922CrossRefPubMedPubMedCentralGoogle Scholar
  3. Battaglene SC, Bell JD (1999) Potential of the tropical sea cucumber, Holothuria scabra, for stock enhancement. In: Howell BR, Moskness E, Svasand T (eds) Stock enhancement and sea ranching. Blackwell Science, Oxford, pp 478–490Google Scholar
  4. Bird RP, Draper AH (1984) Comparative studies on different methods of malondialdehyde determination. Method Enzymol 90:105–110Google Scholar
  5. Blum J, Fridovich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508CrossRefPubMedGoogle Scholar
  6. Bordbar S, Anwar F, Saari N (2011) High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs 9:1761–1805CrossRefPubMedPubMedCentralGoogle Scholar
  7. Box A, Sureda A (2009) Antioxidant responses of bivalve Pinna nobilis colonized with invasive macroalgae Lophodadia lallemandi. Comp Biochem Physiol 149(C):456–460Google Scholar
  8. Bradford MM (1976) Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Anal-Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Cerenius L, Lee BL, Söderhäll K (2008) The proPOsystem: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271CrossRefPubMedGoogle Scholar
  10. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381CrossRefPubMedGoogle Scholar
  11. Cheng W, Chen JC (2000) Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol 10:387–391CrossRefPubMedGoogle Scholar
  12. Cheng W, Hsiao IS, Hsu CH, Chen JC (2004) Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 17:235–243CrossRefPubMedGoogle Scholar
  13. Clairborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284Google Scholar
  14. Coates CJ, Bradford EL, Krome CA, Nairn J (2012) Effect of temperature on biochemical and cellular properties of captive Limulus polyphemus. Aquaculture 334(337):30–38CrossRefGoogle Scholar
  15. Coteur G, Corriere N, Dubois Ph (2004) Environmental factors influencing the immune responses of the common European starfish (Asterias rubens). Fish Shellfish Immunol 16:51–63CrossRefPubMedGoogle Scholar
  16. Cribb AE, Leeder JS, Spielberg SP (1989) Use of a microplate reader in an assay of glutathione-reductase using 5,50-dithiobis(2-nitrobenzoic acid). Anal Biochem 183:195–196CrossRefPubMedGoogle Scholar
  17. De Lafontaine Y, Gagne F, Blaise C, Costan G, Gagnon P, Chan HM (2000) Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aquat Toxicol 50:51–71CrossRefPubMedGoogle Scholar
  18. Di Pierro D, Tavazzi B, Lazzarino G, Giardina B (1992) Malondialdehyde is a biochemical marker of peroxidative damage in the isolated reperfused rat heart. Mol Cell Biochem 116:193–196CrossRefPubMedGoogle Scholar
  19. Dix TA, Aikens J (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 6:18–62CrossRefGoogle Scholar
  20. Dong YW, Dong SL, Tian XL, Wang F, Zhang MZ (2006) Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 255:514–521CrossRefGoogle Scholar
  21. Dong YW, Dong S, Meng X (2008) Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture 276(1–4):179–186CrossRefGoogle Scholar
  22. Dröge W (2003) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefGoogle Scholar
  23. Drossos G, Lazou A, Panagopoulos P, Westaby S (1995) Deferoxamine cardioplegia reduces superoxide radical production in human myocardium. Ann Thorac Surg 59:169–172CrossRefPubMedGoogle Scholar
  24. Farcy E, Serpentini A, Fiévet B, Lebel JM (2007) Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol B: Biochem Mol Biol 146(4):540–550CrossRefGoogle Scholar
  25. Garcia-Arrarás JEG, Dolmatov IY (2010) Echinoderms; potential model systems for studies on muscle regeneration. Curr Pharm Des 16(8):942–955CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gomez-Jimenez S, Uglow RF, Gollas-Galvan T (2000) The effects of cooling and emersion on total haemocyte count and phenoloxidase activity of the spiny lobster Panulirus interruptus. Fish Shellfish Immunol 10:631–635CrossRefPubMedGoogle Scholar
  27. Hair C, 2012 Sandfish (Holothuria scabra) production and sea-ranching trial in Fiji. In: Hair CA, Pickering TD, Mills DJ (eds.) Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings, vol 136. Australian Centre for International Agricultural Research, Canberra, pp 129–141Google Scholar
  28. Hamel JF, Conand C, Pawson DL, Mercier A (2001) The sea cucumber Holothuria scabra (Holothuroidea: Echinodermata): Its biology and exploitation as Beche-de mer. Adv Mar Biol 41:129–223CrossRefGoogle Scholar
  29. Hellio C, Bado-Nilles A, Gagnaire B, Renault T, Guyon HT (2007) Demonstration of a true phenoloxidase activity and activation of a ProPO cascade in Pacific oyster, Crassostrea gigas (Thunberg) in vitro. Fish Shellfish Immunol 22:433–440CrossRefPubMedGoogle Scholar
  30. Howcroft CF, Amorim MJB, Gravato C, Guilhermino L, Soares AMVM (2009) Effects of natural and chemical stressors on Enchytraeus albidus: Can oxidative stress parameters be used as fast screening tools for the assessment of different stress impacts in soils? Environ Int 35:318–324CrossRefPubMedGoogle Scholar
  31. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs—review. Science 301:929–933CrossRefPubMedGoogle Scholar
  32. Ji T, Dong Y, Dong Sh (2008) Growth and physiological responses in the sea cucumber Apostichopus japonicas Selenka: aestivation and temperature. Aquaculture 283:180–187CrossRefGoogle Scholar
  33. Jiang J, Zhou Z, Dong Y, Guan X, Wang B, Jiang B, Yang A, Chen Z, Gao S, Sun H (2014) Characterization of phenoloxidase from the sea cucumber Apostichopus japonicus. Immunobiology 219:450–456CrossRefPubMedGoogle Scholar
  34. Kim KY, Lee SY, Cho YS, Bang C, Kim KH, Kim DS, Nam YK (2007) Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese superoxide dismutases in disk abalone, Haliotis discus discus. Fish Shellfish Immunol 23(5):1043–1059CrossRefPubMedGoogle Scholar
  35. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754PubMedGoogle Scholar
  36. Kühnhold H, Kamyab E, Novais S, Indriana L, Kunzmann A, Slater M, Lemos M (2016) Thermal stress effects on energy resource allocation and oxygen consumption rate in the juvenile sea cucumber, Holothuria scabra (Jaeger, 1833). Aquaculture. doi: 10.1016/j.aquaculture.2016.03.018 Google Scholar
  37. Laughton AM, Jothy MTS (2011) A standardised protocol for measuring phenoloxidase and prophenoloxidase in the honey bee Apis mellifera. Apidologie 42:140–149CrossRefGoogle Scholar
  38. Mathew S, Ashok Kumar K, Anandan R, Viswanathan Nair VG, Devadasan K (2007) Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Comp Biochem Physiol C 145:315–320Google Scholar
  39. McCord JM, Fridovich I (1969) Superoxide dismutase. J Biol Chem 244:6049–6055PubMedGoogle Scholar
  40. Menezes S, Soares AMVM, Guilhermino L, Peck MR (2006) Biomarker responses of the estuarine brown shrimp Crangon crangon L. to non-toxic stressors: temperature, salinity and handling stress effects. J Exp Mar Biol Ecol 335:114–122CrossRefGoogle Scholar
  41. Motokawa T, Tsuchi A (2003) Dynamic mechanical properties of body wall dermis in various mechanical states and their implications for the behavior of sea cucumber. Biol Bull 205:261–275CrossRefPubMedGoogle Scholar
  42. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal-tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  43. Olive PL (1988) DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen A 11:487–495. doi: 10.1002/em.2850110409 CrossRefGoogle Scholar
  44. Peakall D (1992) Animal biomarkers as pollution indicators. Chapman & Hall, London, pp 20–37CrossRefGoogle Scholar
  45. Purcell SW, Simutoga M (2008) Spatio-temporal and size-dependent variation in the success of releasing cultured sea cucumbers in the wild. Rev Fish Sci 16:204–214CrossRefGoogle Scholar
  46. Purcell SW, Hair CA, Mills DJ (2012) Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture 681:368–369Google Scholar
  47. Ratcliffe NA, Leonard CM, Rowley AF (1984) Prophenoloxidase activation, non-self recognition and cell co-operation in insect immunity. Science 226:557–559CrossRefPubMedGoogle Scholar
  48. Rodriguez J, Le Moullac G (2000) State of the art of immunological tools and health control of penaeid shrimp. Aquaculture 191:109–119CrossRefGoogle Scholar
  49. Rodriguez AEP, Oliva-Teles T, MesquitaSR Delerue-Matos C, Guimaraes L (2014) Integrated biomarker responses of an estuarine invertebrate to high abiotic stress and decreased metal contamination. Mar Environ Res 101:101–114CrossRefGoogle Scholar
  50. Saint-Denis M, Narbonne JF, Arnaud C, Ribera D (2001) Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate. Soil Biol Biochem 33:395–404CrossRefGoogle Scholar
  51. Sierra E, Diaz F, Espina S (1999) Energy budget of Ictalurus punctatus exposed to constant and fluctuating temperatures. Riv Ital Acquac 34:71–81Google Scholar
  52. SigmaPlot (1997) SigmaPlot for Windows version 11. SPSS Inc., ChicagoGoogle Scholar
  53. Silva CSE, Novais SC, Lemos MFL, Mendes S, Oliveira AP, Gonçalves EJ, Faria AM (2016) Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae. Sci Total Environ 563–564:89–98CrossRefPubMedGoogle Scholar
  54. Söderhäll K (1981) Fungal cell wall β-1,3-glucans induce clotting and phenoloxidase attachment to foreign surfaces of crayfish haemocyte lysate. Dev Comp Immunol 5:565–573CrossRefPubMedGoogle Scholar
  55. Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10:23–28CrossRefPubMedGoogle Scholar
  56. Söderhäll K, Unestam T (1979) Activation of cray fish serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins. Cun J Microhiol 25:406–414CrossRefGoogle Scholar
  57. Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586CrossRefPubMedGoogle Scholar
  58. Spirina IS, Dolmatov IY (2001) Morphology of the Respiratory Trees in the Holothurians Apostichopus japonicus and Cucumaria japonica. Russ J Mar Biol 27(6):367–375CrossRefGoogle Scholar
  59. Sritunyalucksana K, Söderhäll K (2000) The proPO and clotting system in crustaceans. Aquaculture 191:53–69CrossRefGoogle Scholar
  60. Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CMN, Curi-Pedrosa R, de Almeida EA, Di Mascio P, Wilhelm D (2002) Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar Pollut Bull 44:923–932CrossRefPubMedGoogle Scholar
  61. Tseng DY, Ho PL, Huang SY, Cheng SC, Shiu YL, Chiu CS (2009) Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol 26:339–344CrossRefPubMedGoogle Scholar
  62. Tujula N, Radford J, Nair SV, Raftos DA (2001) Effects of tributyltin and other metals on the phenoloxidase activating system of the tunicate Styela plicata. Aquat Toxicol 55:191–201CrossRefPubMedGoogle Scholar
  63. Uthicke S (2001) Nutrient regeneration by abundant coral reef holothurians. J Exp Mar Biol Ecol 265:153–170CrossRefGoogle Scholar
  64. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. J Ecotoxicol Environ Saf 64:178–189CrossRefGoogle Scholar
  65. Vargas-Albores F, Hinojosa-Baltazar P, Portillo-Clark G, Magallon-Barajas F (1998) Influence of temperature and salinity on the yellow leg shrimp, Penaeus californiensis Holmes. Aquac Res 29:549–553CrossRefGoogle Scholar
  66. Venugopal V (2009) Marine habitat and resources. In: Venugopal V (ed) Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. CRC Press Taylor & Francis Group, Boca Raton, pp 23–50Google Scholar
  67. Vigo-Pelfrey C (ed) (1990) Membrane lipid oxidation, vol 1. CRC Press, Boca Raton, p 239Google Scholar
  68. Wang F, Yang H, Gao F, Liu G (2008) Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Comp Biochem Physiol A(151):491–498CrossRefGoogle Scholar
  69. Wilhelm D, Tribess T, Gaspari C, Claudio FD, Torres MA, Magalhaes ARM (2001) Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Perna perna). Aquaculture 203:149–158CrossRefGoogle Scholar
  70. Wolkenhauer SM (2008) Burying and feeding activity of adult Holothuria scabra (Echinodermata: Holothuroidea) in a controlled environment. Beche-de-mar info. Bull Secr Pac Community 27:25–28Google Scholar
  71. Wu JL, Wu QP, Peng YP, Zhang JM (2011) Effects of L-Malate on Mitochondrial Oxidoreductases in Liver of Aged Rats. Physiol Res 60:329–336PubMedGoogle Scholar
  72. Zdanovich VV (1999) Some features of growth of the young of Mozambique tilapia, Oreochromis mossambicus, at constant and fluctuating temperatures. Ichthyology 39:100–104Google Scholar
  73. Zhou J, Wang L, Xin Y, Wang WN, He WN, Wang AL, Liu Y (2010) Effect of temperature on antioxidant enzyme gene expression and stress protein response in white shrimp, Litopenaeus vannamei. J Therm Biol 35:284–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elham Kamyab
    • 1
  • Holger Kühnhold
    • 1
  • Sara C. Novais
    • 2
  • Luís M. F. Alves
    • 2
  • Lisa Indriana
    • 3
  • Andreas Kunzmann
    • 1
  • Matthew Slater
    • 4
  • Marco F. L. Lemos
    • 2
    • 5
  1. 1.Leibniz Center for Tropical Marine Ecology (ZMT)BremenGermany
  2. 2.MARE-Marine and Environmental Sciences CentreESTM, Instituto Politécnico de LeiriaPenichePortugal
  3. 3.The Indonesian Institute of ScienceResearch Centre for Oceanography (LIPI)LombokIndonesia
  4. 4.Alfred Wegener InstituteHelmholtz-Centre for Polar and Marine Research (AWI)BremerhavenGermany
  5. 5.Edifício CETEMARESPenichePortugal

Personalised recommendations