Skip to main content
Log in

Modulatory effects on Drosophila larva hearts: room temperature, acute and chronic cold stress

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Ectothermic animals are susceptible to temperature changes such as cold shock with seasons. To survive through a cold shock or season, ectotherms have developed unique strategies. Our interest is focusing on the modulation of physiological functions during cold shock and prolonged cold exposure in the fruit fly. We use Drosophila melanogaster as a model system to investigate cardiac function in response to modulators (5-HT—serotonin, Ach—acetylcholine, OA—octopamine, DA—dopamine and a cocktail of modulators) in acute cold shock and chronic cold shock conditions. Semi-intact larvae are used to provide direct access to the modulators of known concentration in a defined saline. The results show that 10 µM 5HT is the only modulator which maintains heart rate for larva raised at 21 °C and then exposed to acute cold shock (10 °C). The modulators 1 µM OA, 10 µM 5HT, 1 mM Ach, 10 µM Ach and a cocktail of modulators (at 10 µM) increased the heart rate significantly in larvae which were cold conditioned (10 °C for 10 days). HPLC analysis indicated both OA and 5-HT decreased in chronic cold conditioning. The larvae maintain heart function in the cold which may be contributed by low circulating levels of modulators. The larval heart responds better to 5-HT, OA, and Ach in conditioned cold than for acute cold, suggesting some acclimation to cold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackefors H (1999) The positive effects of established crayfish introductions in Europe. In: Gherardi F, Holdich DM (eds) Crayfish in Europe as Alien species—how to make the best of a bad situation?. CRC Press, Boca Raton, pp 49–61

    Google Scholar 

  • Alpatov WW (1929) Growth and variation of the larvae of Drosophila melanogaster. J Exp Zool 52(3):407–437

    Article  Google Scholar 

  • Andersen JL, MacMillan HA, Overgaard J (2015) Temperate Drosophila preserve cardiac function at low temperature. J Insect Physiol 77:26–32. doi:10.1016/j.jinsphys.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner U, Greffrath W, Treede RD (2012) Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and limitations for basic science and clinical use. Neurophysiol Clin 42(5):267–280. doi:10.1016/j.neucli.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  • Bayley M, Holmstrup M (1999) Water vapor absorption in arthropods by accumulation of myoinositol and glucose. Sci 285(5435):1909–1911

    Article  CAS  Google Scholar 

  • Bayley M, Petersen SO, Knigge T, Köhler H, Holmstrup M (2001) Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J Insect Physiol 47(10):1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Becnel J, Johnson O, Luo J, Nassel DR, Nichols CD (2011) The serotonin 5-HT7Dro receptor is expressed in the brain of Drosophila, and is essential for normal courtship and mating. PLoS One 6(6):e20800. doi:10.1371/journal.pone.0020800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becnel J, Johnson O, Majeed ZR, Tran V, Yu B, Roth BL, Cooper RL, Kerut EK, Nichols CD (2013) DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly. Cell Rep 4(5):1049–1059. doi:10.1016/j.celrep.2013.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett VA, Pruitt NL, Lee RE (1997) Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis. J Comp Physiol B 167:249–255

    Article  CAS  Google Scholar 

  • Burton V, Mitchell HK, Young P, Petersen NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8:3550–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic Drosophila melanogaster. Springer, Berlin

    Book  Google Scholar 

  • Chen CP, Walker VK (1994) Cold-shock and chilling tolerance in Drosophila. J Insect Physiol 40:661–669

    Article  Google Scholar 

  • Chung YS, Cooper RM, Graff J, Cooper RL (2012) The acute and chronic effect of low temperature on survival, heart rate and neural function in crayfish (Procambarus clarkii) and prawn (Macrobrachium rosenbergii) species. Open J Mol Integrat Physiol 2(3):75–86. doi:10.4236/ojmip.2012.23011

    Article  Google Scholar 

  • Colinet H, Larvor V, Laparie M, Renault D (2012) Exploring the plastic response to cold acclimation through metabolomics. Funct Ecol 26(3):711–722. doi:10.1111/j.1365-2435.2012.01985.x

    Article  Google Scholar 

  • Cooper AS, Rymond KE, Ward MA, Bocook EL, Cooper RL (2009) Monitoring heart function in larval Drosophila melanogaster for physiological studies. J Vis Exp 33:E1596. doi:10.3791/1596

    Google Scholar 

  • Cooper RM, Finucane HS, Adami M, Cooper RL (2011) Heart and ventilatory measures in crayfish during copulation. Open J Mol Integrat Physiol 1(3):36–42. doi:10.4236/ojmip.2011.13006

    Article  Google Scholar 

  • Cooper, AS, Leksrisawat B, Mercier AJ, Gilberts AB, Cooper RL (2011b) Physiological experimentations with the crayfish hindgut: a student laboratory exercise. JoVE 47. http://www.jove.com/details.php?id=2324. doi:10.3791/2324

  • Coste B, Xiao BL, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):U172–U176. doi:10.1038/nature10812

    Article  Google Scholar 

  • Czajka MC, Lee RE Jr (1990) A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J Exp Biol 148:245–254

    CAS  PubMed  Google Scholar 

  • Dasari S, Cooper RL (2004) Modulation of sensory–CNS–motor circuits by serotonin, octopamine, and dopamine in semi-intact Drosophila larva. Neurosci Res 48(2):221–227. doi:10.1016/j.neures.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Evans PD (1984) Stress-induced changes in the octopamine levels of insect haemolymph. Insect Biochem 14(2):135–143

    Article  CAS  Google Scholar 

  • David J, Coulon J (1985) Octopamine in invertebrates and vertebrates a review. Prog Neurobiol 24:141–185

    Article  CAS  PubMed  Google Scholar 

  • de Castro C, Titlow J, Majeed ZR, Cooper RL (2014) Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:83–92. doi:10.1007/s00359-013-0864-0

    Article  PubMed  Google Scholar 

  • de Castro C, Titlow J, Majeed ZR, Vaughn M, King K, Cooper RL (2015) Maintaining the Drosophila larval heart in situ: Modulators and stretch activated channels. The 9th international congress of comparative physiology and biochemistry, August 23–28, (Abstract)

  • Desai-Shah M, Papoy AR, Ward M, Cooper RL (2010) Roles of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger in regulation of heart rate in larval Drosophila. Open Physiol J 3:16–36

    Article  CAS  Google Scholar 

  • Djokaj S, Cooper RL, Rathmayer W (2001) Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol A 187(2):145–154. doi:10.1007/s003590100187

    Article  CAS  PubMed  Google Scholar 

  • Dowse H, Ringo J, Power J, Johnson E, Kinney K, White L (1995) A congenital heart defect in Drosophila caused by an action-potential mutation. J Neurogenet 10(3):153–168. doi:10.3109/01677069509083461

    Article  CAS  PubMed  Google Scholar 

  • El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T (2015) Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res. doi:10.1007/s00441-015-2137-4

    PubMed  Google Scholar 

  • Even N, Devaud J-M, Barron A (2012) General stress responses in the honey bee. Insects 3(4):1271–1298. doi:10.3390/insects3041271

    Article  PubMed  PubMed Central  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–283

    Article  CAS  PubMed  Google Scholar 

  • French AS, Simcock KL, Rolke D, Gartside SE, Blenau W, Wright GA (2014) The role of serotonin in feeding and gut contractions in the honeybee. J Insect Physiol 61:8–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Arberas L, Rallo A, Antón A (2009) The future of the indigenous freshwater crayfish Austropota-mobius italicus in Basque Country streams: is it possible to survive being an inconvenient species? Knowl Manag Aquat Ecosyst 19:394–395

    Google Scholar 

  • Goosey M, Candy D (1980) The d-octopamine content of the haemolymph of the locust, Schistocerca Americana gregaria and its elevation during flight. Insect Biochem 10(4):393–397

    Article  CAS  Google Scholar 

  • Goto SG, Kimura MT (1998) Heat- and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila. J Insect Physiol 44:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Graham AM, Merrill JD, McGaugh SE, Noor MA (2012) Geographic selection in the small heat shock gene complex differentiating populations of Drosophila pseudoobscura. J Hered 103(3):400–407. doi:10.1093/jhered/esr150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu GG, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila. J Neurobiol 28(3):269–280. doi:10.1002/neu.480280302

    Article  CAS  PubMed  Google Scholar 

  • Hirashima A, Eto M (1993) Effect of stress on levels of octopamine, dopamine and serotonin in the American cockroach. Comp Biochem Physiol 105C(2):279–284

    CAS  Google Scholar 

  • Ikemoto Y, Kawaii S, Mizutani J (1993) Microdialysis for the analysis of insect haemolymph. Biosci Biotech Biochem 57(3):402–404

    Article  CAS  Google Scholar 

  • Jennings T, Ringo J, Dowse H (2009) The relationship of heart function to temperature in Drosophila melanogaster and its heritability. J Exp Zool 311A:689–696

    Article  Google Scholar 

  • Johnson E, Ringo J, Dowse H (1997) Modulation of Drosophila heartbeat by neurotransmitters. J Comp Physiol B 167:89–97

    Article  CAS  PubMed  Google Scholar 

  • Johnson E, Ringo J, Bray N, Dowse H (1998) Genetic and pharmacological identification of ion channels central to the Drosophila cardiac pacemaker. J Neurogenet 12(1):1–24

    Article  PubMed  Google Scholar 

  • Johnson E, Sherry T, Ringo J, Dowse H (2002) Modulation of the cardiac pacemaker of Drosophila: cellular mechanisms. J Comp Physiol B 172:227–236

    Article  CAS  PubMed  Google Scholar 

  • Johnstone AF, Cooper RL (2006) Direct innervation of the Drosophila melanogaster larval aorta. Brain Res 1083(1):159–163. doi:10.1016/j.brainres.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  • Kayukawa T, Ishikawa Y (2009) Chaperonin contributes to cold hardiness of the onion maggot Delia antiqua through repression of depolymerization of actin at low temperatures. PLoS One 4(12):e8277. doi:10.1371/journal.pone.0008277

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelty JD, Lee RE Jr (1999) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45(8):719–726

    Article  CAS  PubMed  Google Scholar 

  • Kelty JD, Lee RE Jr (2001) Rapid cold-hardening of Drosophila Melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. J Exp Biol 204:1659–1666

    CAS  PubMed  Google Scholar 

  • Lalevee N, Monier B, Senatore S, Perrin L, Semeriva M (2006) Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr Biol 16(15):1502–1508. doi:10.1016/j.cub.2006.05.064

    Article  CAS  PubMed  Google Scholar 

  • Lee RE Jr, Damodaran K, Yi S, Lorigan GA (2006) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52:459–463

    Article  CAS  PubMed  Google Scholar 

  • Levenson J, Byrne JH, Eskin A (1999) Levels of serotonin in the hemolymph of aplysia are modulated by light/dark cycles and sensitization training. J Neurosci 19(18):8094–8103

    CAS  PubMed  Google Scholar 

  • Lewis EB (1960) A new standard food medium. Drosophila Inform Serv 34:117

    Google Scholar 

  • Listerman L, Deskins J, Bradacs H, Cooper RL (2000) Measures of heart rate during social interactions in crayfish and effects of 5-HT. Comp Biochem Physiol A 125:251–264

    Article  CAS  Google Scholar 

  • Majeed ZR, Nichols CD, Cooper RL (2013) 5-HT stimulation of heart rate in Drosophila does not act through cAMP as revealed by pharmacogenetics. J Appl Physiol 115(11):1656–1665. doi:10.1152/japplphysiol.00849.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeed ZR, Stacy A, Cooper RL (2014) Pharmacological identification of serotonin receptor subtypes on the Drosophila larval heart. J Comp Physiol B 184(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Malloy C, Ritter K, Robinson J, Cooper RL (2015) Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 186(1):45–57

    Article  PubMed  Google Scholar 

  • Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11. doi:10.1016/j.neuron.2012.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud MR, Denlinger DL (2006) Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly,Sarcophaga crassipalpis. J Insect Physiol 52(10):1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Newman AEM, Foerster M, Shoemaker KL, Robertson RM (2003) Stress-induced thermotolerance of ventilator motor pattern generation in the locust, Locusta migratoria. J Insect Physiol 49:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Nyström P (1999) Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In: Gherardi F, Holdich DM (eds) Crayfish in Europe as Alien species—how to make the best of a bad situation?. CRC Press, Boca Raton, pp 63–85

    Google Scholar 

  • Okada T (1963) Caenogenetic differentiation of mouth hooks in Drosophilid larvae. Evolution 17:84–98

    Article  Google Scholar 

  • Overgaard J, Sørensen JG, Petersen SO, Loeschcke V, Holmstrup M (2005) Change in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51(11):1178–1182

    Article  Google Scholar 

  • Overgaard J, Sørensen JG, Petersen SO, Loeschcke V, Holmstrup M (2006) Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol Entomol 31:328–335

    Article  CAS  Google Scholar 

  • Overgaard J, Malmendal A, Sørensen JG, Bundy JG, Loeschcke V, Nielsen NC, Holmstrup M (2007) Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. J Insect Physiol 53(12):1218–1232

    Article  CAS  PubMed  Google Scholar 

  • Pagé MP, Hailes W, Cooper RL (2007) Modification of the tail flip escape response in crayfish by neuromodulation and behavioral state with and without descending CNS input. Int J Zool Res 3:132–144

    Article  Google Scholar 

  • Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic Press, Cambridge

    Google Scholar 

  • Shuranova ZP, Burmistrov YM, Strawn JP, Cooper RL (2006) Evidence for an autonomic nervous system in decapod crustaceans. Int J Zool Res 2(3):242–283

    Article  Google Scholar 

  • Sneddon LU, Taylor AC, Huntingford FA, Watson DG (2000) Agonistic behavior and biogenic amines in shore crabs Carcinus maenas. J Exp Biol 203:537–545

    CAS  PubMed  Google Scholar 

  • Stewart BA, Atwood HL, Renger JJ, Wang J, Wu CF (1994) Improved stability of Drosophila larval neuromuscular preparation in hemolymph-like physiological solutions. J Comp Physiol A 175:179–191

    Article  CAS  PubMed  Google Scholar 

  • Strawn JR, Neckameyer WS, Cooper RL (2000) The effects of 5-HT on sensory neurons, central, and motor neurons driving the abdominal superficial flexor muscles in the crayfish. Comp Biochem and Physiol B 127:533–550

    Article  CAS  Google Scholar 

  • Terhzaz S, Teets NM, Cabrero P, Henderson L, Ritchie MG, Nachman RJ, Dow JA, Denlinger DL, Davies SA (2015) Insect capa neuropeptides impact desiccation and cold tolerance. Proc Natl Acad Sci USA 112(9):2882–2887. doi:10.1073/pnas.1501518112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titlow JS, Rufer JM, King KE, Cooper RL (2013) Pharmacological analysis of dopamine modulation in the Drosophila melanogaster larval heart. Physiol Rep 1(2):e00020. doi:10.1002/phy2.20

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomcala A, Tollarová M, Overgaard J, Simek P, Kostál V (2006) Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. J Exp Biol 209:4102–4114

    Article  CAS  PubMed  Google Scholar 

  • Vesala L, Salminen TS, Laiho A, Hoikkala A, Kankare M (2012) Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Mol Biol 21(1):107–118. doi:10.1111/j.1365-2583.2011.01119.x

    Article  CAS  PubMed  Google Scholar 

  • White LA, Ringo JM, Dowse HB (1992) Effects of deuterium oxide and temperature on heart rate in Drosophila melanogaster. J Comp Physiol B 162(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Yi SX, Moore CW, Lee RE Jr (2007) Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis 12(7):1183–1193

    Article  PubMed  Google Scholar 

  • Zhu YC, Uradu H, Majeed Z, Cooper RL (2016a) Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 4(3):e12695

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Zhang H, Li X, Meng Q, Shu R, Wang M, Zhou G, Wang H, Miao L, Zhang J, Qin Q (2016b) Cold adaptation mechanisms in the ghost moth Hepialus xiaojinensis: metabolic regulation and thermal compensation. J Insect Physiol 85:76–85

    Article  CAS  PubMed  Google Scholar 

  • Zornik E, Paisley K, Nichols R (1999) Neural transmitters and a peptide modulate Drosophila heart rate. Peptides 20(1):45–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nicholas M. Teets (Univ. of KY) for insightful comments and suggestions on this manuscript. We thank Mr. Cole Malloy, Dr. Zana Majeed, Ms. Angel Ho and Ms. Clara de Castro for help in aspects of this project as well as Dr. Rymond for use of the cold room. This work was funded by G. Ribble fellowship from Dept. of Biology, Univ. of KY (HU), JS and EY were supported by KY IDeA Network of Biomedical Research Excellence Grant #P20GM103436 and personal funds (RLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Cooper.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y.C., Yocom, E., Sifers, J. et al. Modulatory effects on Drosophila larva hearts: room temperature, acute and chronic cold stress. J Comp Physiol B 186, 829–841 (2016). https://doi.org/10.1007/s00360-016-0997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0997-x

Keywords

Navigation