Journal of Comparative Physiology B

, Volume 185, Issue 8, pp 869–882 | Cite as

Response of lactate metabolism in brain glucosensing areas of rainbow trout (Oncorhynchus mykiss) to changes in glucose levels

  • Cristina Otero-Rodiño
  • Marta Librán-Pérez
  • Cristina Velasco
  • Rosa Álvarez-Otero
  • Marcos A. López-Patiño
  • Jesús M. Míguez
  • José L. Soengas
Original Paper
  • 212 Downloads

Abstract

There is no evidence in fish brain demonstrating the existence of changes in lactate metabolism in response to alterations in glucose levels. We induced in rainbow trout through intraperitoneal (IP) treatments, hypoglycaemic or hyperglycaemic changes to assess the response of parameters involved in lactate metabolism in glucosensing areas like hypothalamus and hindbrain. To distinguish those effects from those induced by peripheral changes in the levels of metabolites or hormones, we also carried out intracerebroventricular (ICV) treatments with 2-deoxy-d-glucose (2-DG, a non-metabolizable glucose analogue thus inducing local glucopenia) or glucose. Finally, we also incubated hypothalamus and hindbrain in vitro in the presence of increased glucose concentrations. The changes in glucose availability were in general correlated to changes in the amount of lactate in both areas. However, when we assessed in these areas the response of parameters related to lactate metabolism, the results obtained were contradictory. The increase in glucose levels did not produce in general the expected changes in those pathways with only a minor increase in their capacity of lactate production. The decrease in glucose levels was, however, more clearly related to a decreased capacity of the pathways involved in the production and use of lactate, and this was especially evident after ICV treatment with 2-DG in both areas. In conclusion, the present results while addressing the existence of changes in lactate metabolism after inducing changes in glucose levels in brain glucosensing areas only partially support the possible existence of an astrocyte–neuron lactate shuttle in hypothalamus and hindbrain of rainbow trout relating glucose availability to lactate production and use.

Keywords

Rainbow trout Hypothalamus Hindbrain Lactate 

Notes

Acknowledgments

This study was supported by a research grant from Ministerio de Economía y Competitividad and European Fund for Regional Development (AGL2013-46448-3-1-R and FEDER). C. O-R. and M. L-P. were recipients of predoctoral fellowships from Ministerio de Economía y Competitividad (BES‐2014‐068040 and BES-2011-043394, respectively).

References

  1. Allard C, Carneiro L, Collins SC, Chrétien C, Grall S, Pénicaud L, Leloup C (2013) Alteration of hypothalamic glucose and lactate sensing in 48 h hyperglycemic rats. Neurosci Lett 534:75–79CrossRefPubMedGoogle Scholar
  2. Briski KP, Cherian AK, Genabai NK, Vavaiya KV (2009) In situ coexpression of glucose and monocarboxylate transporter mRNAs in metabolic-sensitive caudal dorsal vagal complex catecholaminergic neurons: transcriptional reactivity to insulin-induced hypoglycemia and caudal hindbrain glucose or lactate repletion during insulin-induced hypoglycemia. Neuroscience 164:1152–1160CrossRefPubMedGoogle Scholar
  3. Chen H, Simar D, Morris MJ (2014) Maternal obesity impairs brain glucose metabolism and neural response to hyperglycemia in male rat offspring. J Neurochem 129:297–303CrossRefPubMedGoogle Scholar
  4. Dienel GA, Hertz L (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66:824–838CrossRefPubMedGoogle Scholar
  5. Gujar AD, Ibrahim BA, Tamrakar P, Cherian AK, Briski KP (2014) Hindbrain lactostasis regulates hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein responses to hypoglycemia. Am J Physiol Regul Integr Comp Physiol 306:R457–R469PubMedCentralCrossRefPubMedGoogle Scholar
  6. Keppler D, Decker K (1974) Glycogen determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1127–1131Google Scholar
  7. Lansard M, Panserat S, Seiliez I, Polakof S, Plagnes-Juan E, Geurden I, Médale F, Kaushik S, Corraze G (2009) Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets. Br J Nutr 102:1564–1573CrossRefPubMedGoogle Scholar
  8. Ngan AG, Wang YS (2009) Tissue-specific transcriptional regulation of monocarboxylate transporters (MCTs) during short-term hypoxia in zebrafish (Danio rerio). Comp Biochem Physiol B 154:396–405CrossRefPubMedGoogle Scholar
  9. Omlin T, Weber J-M (2013) Exhausting exercise and tissue-specific expression of monocarboxylate transporters in rainbow trout. Am J Physiol Regul Integr Comp Physiol 304:R1036–R1043PubMedCentralCrossRefPubMedGoogle Scholar
  10. Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilhead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278:R1164–R1170PubMedGoogle Scholar
  11. Panserat S, Plagnes-Juan E, Kaushik S (2001) Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204:2351–2360PubMedGoogle Scholar
  12. Parsons MP, Hirasawa M (2010) ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 30:8061–8070CrossRefPubMedGoogle Scholar
  13. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166PubMedCentralCrossRefPubMedGoogle Scholar
  14. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCentralCrossRefPubMedGoogle Scholar
  15. Polakof S, Soengas JL (2008) Involvement of lactate in glucose metabolism and glucosensing function in selected tissues of rainbow trout. J Exp Biol 211:1075–1086CrossRefPubMedGoogle Scholar
  16. Polakof S, Míguez JM, Moon TW, Soengas JL (2007a) Evidence for the presence of a glucosensor in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 292:R1657–R1666CrossRefPubMedGoogle Scholar
  17. Polakof S, Míguez JM, Soengas JL (2007b) In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 293:R1410–R1420CrossRefPubMedGoogle Scholar
  18. Polakof S, Panserat S, Plagnes-Juan E, Soengas JL (2008) Altered dietary carbohydrates significantly affect gene expression of the major glucosensing components in Brockmannn bodies and hypothalamus of rainbow trout. Am J Physiol Regul Integr Comp Physiol 295:R1077–R1088CrossRefPubMedGoogle Scholar
  19. Polakof S, Álvarez R, Soengas JL (2010) Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol Regul Integr Comp Physiol 299:R19–R32CrossRefPubMedGoogle Scholar
  20. Polakof S, Mommsen TP, Soengas JL (2011) Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B 160:123–149CrossRefPubMedGoogle Scholar
  21. Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045CrossRefPubMedGoogle Scholar
  22. Soengas JL (2014) Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 205:36–48CrossRefPubMedGoogle Scholar
  23. Soengas JL, Polakof S (2013) Glucosensing in rainbow trout. In: Polakof S, Moon TW (eds) Trout: from physiology to conservation. Nova Science Publishers, New York, pp 155–177Google Scholar
  24. Soengas JL, Strong EF, Andrés MD (1998) Glucose, lactate, and ß-hydroxybutyrate utilization by rainbow trout brain: changes during food deprivation. Physiol Zool 71:285–293CrossRefPubMedGoogle Scholar
  25. Song Z, Routh VH (2005) Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 54:15–22CrossRefPubMedGoogle Scholar
  26. Song Z, Routh VH (2006) Recurrent hypoglycemia reduces the glucose sensitivity of glucose-inhibited neurons in the ventromedial hypothalamus nucleus. Am J Physiol Regul Integr Comp Physiol 291:R1283–R1287CrossRefPubMedGoogle Scholar
  27. Tseng Y-C, Kao Z-J, Liu S-T, Chen R-D, Hwang P-P (2013) Spatial expression and functional flexibility of monocarboxylate transporter isoforms in the zebrafish brain. Comp Biochem Physiol A 165:106–118CrossRefGoogle Scholar
  28. Tseng Y-C, Liu S-T, Hu MY, Chen R-D, Lee J-R, Hwang P-P (2014) Brain functioning under acute hypothermic stress supported by dynamic monocarboxylate utilization and transport in ectothermic fish. Front Zool 11:53CrossRefGoogle Scholar
  29. Vavaiya KV, Briski KP (2007) Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats. Brain Res 1176:62–70CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cristina Otero-Rodiño
    • 1
  • Marta Librán-Pérez
    • 1
  • Cristina Velasco
    • 1
  • Rosa Álvarez-Otero
    • 1
  • Marcos A. López-Patiño
    • 1
  • Jesús M. Míguez
    • 1
  • José L. Soengas
    • 1
  1. 1.Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Edificio de Ciencias ExperimentaisUniversidade de VigoVigoSpain

Personalised recommendations