Journal of Comparative Physiology B

, Volume 184, Issue 4, pp 497–512 | Cite as

Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes

  • Ryan D. Day
  • Ian R. Tibbetts
  • Stephen M. Secor
Original Paper


We explored the integrated role of dietary specialization and feeding periodicity on the response of the gastrointestinal tract of teleosts fishes to short-term (7–10 days) fasting and refeeding. Fasted and fed herbivorous grass carp (Ctenopharyngodon idella), omnivorous channel catfish (Ictalurus punctatus), and carnivorous largemouth bass (Micropterus salmoides) were compared for digestive organ masses, intestinal morphology, gastrointestinal pH, and the specific activities and total intestinal capacities of the intestinal hydrolases aminopeptidase (APN) and maltase and intestinal nutrient transporters. All three species experience intestinal hypertrophy with feeding as noted by significant increases in enterocyte dimensions. Of the three, only I. punctatus experienced a postprandial increase in intestinal length, and only C. idella experienced significant modulation of intestinal microvillus length. Feeding resulted in acidification of the stomachs of I. punctatus and M. salmoides. Predicted to exhibit a relatively modest set of postprandial responses because of their more frequent feeding habits, C. idella only experienced increases in APN and maltase activity with feeding and no significant regulation of nutrient uptake. Significant regulation of hydrolase activities and nutrient uptake were exhibited by I. punctatus and M. salmoides, with I. punctatus experiencing the most comprehensive set of responses. As predicted by food habits, there was an interspecific gradient in intestinal length and glucose uptake extending from longer intestines and greater glucose uptake for the herbivorous C. idella, intermediate lengths and glucose uptake for the omnivorous I. punctatus, and shorter intestines and reduced glucose uptake for the carnivorous M. salmoides. Among teleosts fishes, short episodes of fasting lead to significant alterations in intestinal form and function that are rapidly restored with feeding.


Fasting Intestinal hydrolases Intestinal morphology Intestinal nutrient transport Microvilli pH Refeeding Teleosts Ctenopharyngodon idella Ictalurus punctatus Micropterus salmoides 



We thank Scott Bessler, Miles Cobia, David Hall, and Brytney Snow for their assistance in the undertaking of this study; Simon Blomberg for statistics consultation; and two anonymous reviewers who offered comments that strengthened the manuscript. This study was funded by fellowships and travel awards from the University of Queensland (to RDD) and the National Science Foundation (IOS 0466139 to SMS).


  1. Abolfathi M, Hajimoradloo A, Ghorbani R, Zamani A (2012) Effects of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp Biochem Physiol A 161:166–173. doi: 10.1016/j.cbpa.2011.10.020 CrossRefGoogle Scholar
  2. Armstrong D, Castiglione F, Emde C, Cilluffo T, Duroux P, Koerfer J, Temler E, Lamers CB, Jansen JB, Blum AL (1992) The effect of continuous enteral nutrition on gastric acidity in humans. Gastroenterology 102:1506–1515PubMedGoogle Scholar
  3. Arrington DA, Winemiller KO, Loftus WF, Akin S (2002) How often do fishes “run on empty”? Ecology 83:2145–2151. doi: 10.2307/3072046 Google Scholar
  4. Avella M, Blaise O, Berhaut J (1992) Effects of starvation on valine and alanine transport across the intestinal mucosal border in sea bass, Dicentrarchus labrax. J Comp Physiol B 162:430–435. doi: 10.1007/BF00258965 PubMedCrossRefGoogle Scholar
  5. Benavides AG, Cancino JM, Ojeda FP (1994) Ontogenetic changes in gut dimensions and macroalgal digestibility in the marine herbivorous fish, Aplodactylus punctatus. Funct Ecol 8:46–51. doi: 10.2307/2390110 CrossRefGoogle Scholar
  6. Brown TG, Runciman B, Pollard S, Grant ADA (2009) Biological synopsis of largemouth bass (Micropterus salmoides). Can Mansucr Rep Fish Aquatic Sci 2884:1–27Google Scholar
  7. Bucking C, Wood CM (2008a) The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chime in rainbow trout. Aquacult Nutr 15:282–296. doi: 10.1111/j.1365-2095.2008.00593.x CrossRefGoogle Scholar
  8. Bucking C, Wood CM (2008b) The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J Exp Biol 211:2533–2541. doi: 10.1242/jeb.015610 PubMedCrossRefGoogle Scholar
  9. Buddington RK, Diamond JM (1987) Pyloric ceca of fish: a “new” absorptive organ. Am J Physiol Gastrointest Liver Physiol 252:G65–G76Google Scholar
  10. Buddington RK, Chen JW, Diamond JM (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 393:261–281PubMedCentralPubMedGoogle Scholar
  11. Carey HV, Zafirova M (1990) Adrenergic inhibition of neutrally evoked secretion in ground squirrel intestine. Eur J Pharmacol 181:43–50. doi: 10.1016/0014-2999(90)90243-Y PubMedCrossRefGoogle Scholar
  12. Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs. Mar Biol 145:445–454. doi: 10.1007/s00227-004-1341-7 CrossRefGoogle Scholar
  13. Christel CM, DeNardo DF, Secor SM (2007) Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum). J Exp Biol 210:3430–3439. doi: 10.1242/jeb.004820 PubMedCrossRefGoogle Scholar
  14. Cochran PA, Adelman IR (1982) Seasonal aspects of daily ration and diet of largemouth bass, Micropterus salmoides, with an evaluation of gastric evacuation rates. Environ Biol Fish 7:265–275. doi: 10.1007/BF00002501 CrossRefGoogle Scholar
  15. Cox CL, Secor SM (2008) Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. J Exp Biol 211:1131–1140. doi: 10.1242/jeb.015313 PubMedCrossRefGoogle Scholar
  16. Cox CL, Secor SM (2010) Integrated postprandial response of the diamondback water snake Nerodia rhombifer. Physiol Biochem Zool 83:618–631. doi: 10.1086/648737 PubMedCrossRefGoogle Scholar
  17. Cramp RL, Franklin CE (2005) Arousal and re-feeding rapidly restores digestive tract morphology following aestivation in green-striped burrowing frogs. Comp Biochem Physiol A 142:451–460. doi: 10.1016/j.cbpa.2005.09.013 CrossRefGoogle Scholar
  18. Cramp RL, Franklin CE, Meyer EA (2005) The impact of prolonged fasting during aestivation on the structure of the small intestine in the green-striped burrowing frog, Cyclorana alboguttata. Acta Zool 86:13–24. doi: 10.1111/j.0001-7272.2005.00180.x CrossRefGoogle Scholar
  19. Dahlqvist A (1968) Assay of intestinal disaccharidases. Anal Biochem 22:99–107. doi: 10.1016/0003-2697(68)90263-7 PubMedCrossRefGoogle Scholar
  20. Day RD, German DP, Manjakasy JM, Farr I, Hansen MJ, Tibbetts IR (2011a) Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J Comp Physiol B 181:603–613. doi: 10.1007/s00360-010-0546-y PubMedCrossRefGoogle Scholar
  21. Day RD, German DP, Tibbetts IR (2011b) Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp Biochem Physiol B 158:23–29. doi: 10.1016/j.cbpb.2010.09.010 PubMedCrossRefGoogle Scholar
  22. Dunel-Erb S, Chevailer C, Laurent P, Bach A, Decrock F, LeMaho Y (2001) Restoration of the jejunal mucosa in rats refed after prolonged fasting. Comp Biochem Physiol A 129:933–947. doi: 10.1016/S1095-6433(01)00360-9 CrossRefGoogle Scholar
  23. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035–1041. doi: 10.1136/gut.29.8.1035 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ferraris RP, Ahearn GA (1984) Sugar and amino acid transport in fish intestine. Comp Biochem and Physiol A 77:397–413. doi: 10.1016/0300-9629(84)90204-4 CrossRefGoogle Scholar
  25. Fox BVM, Musacchia XJ (1959) Notes on the pH of the digestive tract of Chrysemys picta. Copeia 1959:337–339. doi: 10.2307/1439895 CrossRefGoogle Scholar
  26. Fu SJ, Zeng LQ, Li XM, Pang X, Cao ZD, Peng JL, Wang YX (2009) The behavioural, digestive and metabolic characteristics of fishes with different foraging strategies. J Exp Biol 212:2296–2302. doi: 10.1242/jeb.027102 PubMedCrossRefGoogle Scholar
  27. Gaucher L, Vidal N, D’Anatro A, Naya DE (2012) Digestive flexibility during fasting in the characid fish Hyphessocrycon luetkenii. J Morph 273:46–56. doi: 10.1002/jmor.11005 CrossRefGoogle Scholar
  28. German DP (2009) Do herbivorous minnows have “plug-flow reactor” guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations. J Comp Physiol B 179:759–771. doi: 10.1007/s00360-009-0359-z PubMedCentralPubMedCrossRefGoogle Scholar
  29. German DP, Horn MH (2006) Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary and phylogenetic effects. Mar Biol 148:1123–1134. doi: 10.1007/s00227-005-0149-4 CrossRefGoogle Scholar
  30. German DP, Horn MH, Gawlicka A (2004) Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary and phylogenetic effects. Physiol Biochem Zool 77:789–804. doi: 10.1086/422228 PubMedCrossRefGoogle Scholar
  31. German DP, Nagle BC, Villeda JM, Ruiz AM, Thomson AW, Contreras-Balderas S, Evans DH (2010a) Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae): effects on gut size and digestive physiology. Physiol Biochem Zool 83:1–18. doi: 10.1086/648510 PubMedCrossRefGoogle Scholar
  32. German DP, Neuberger DT, Callahan MN, Lizardo NR, Evans DH (2010b) Feast to famine: the effects of food quality and quantity on the gut structure and function of a detritivorous catfish (Teleostei: Loricariidae). Comp Biochem Physiol A 155:281–293. doi: 10.1016/j.cbpa.2009.10.018 CrossRefGoogle Scholar
  33. Greenwood PH (1987) The natural history of African lungfishes. In: Bemis WE, Burggren WW, Kemp NE (eds) The Biology and evolution of lungfishes. Alan R Liss Inc, New York, pp 163–179Google Scholar
  34. Hidalgo MC, Urea E, Sanz A (1999) Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170:267–283. doi: 10.1016/S0044-8486(98)00413-X CrossRefGoogle Scholar
  35. Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol 27:167–272Google Scholar
  36. Horn MH, Messer KS (1992) Fish guts as chemical reactors: a model of the alimentary canals of marine herbivorous fishes. Mar Biol 113:527–535. doi: 10.1007/BF00349695 CrossRefGoogle Scholar
  37. Horn MH, Gawlicka AK, German DP, Logothetis EA, Cavanagh JW, Boyle KS (2006) Structure and function of the stomachless digestive system in three related species of New World silverside fishes (Atherinopsidae) representing herbivory, omnivory and carnivory. Mar Biol 149:1237–1245. doi: 10.1007/s00227-006-0281-9 CrossRefGoogle Scholar
  38. Jackson DC (2004) Natural history and fisheries. In: Tucker CS, Hargreaves JA (eds) Biology and culture of channel catfish. Elsevier, Amsterdam, pp 15–36. doi: 10.1016/S0167-9309(04)80004-8
  39. Kadri S, Metcalfe NB, Huntingford FA, Thorpe JE (1995) What controls the onset of anorexia in maturing adult female Atlantic salmon? J Funct Ecol 9:790–797. doi: 10.2307/2390254 CrossRefGoogle Scholar
  40. Kapoor BG, Smit H, Verighina IA (1975) The alimentary canal and digestion in teleosts. Adv Mar Biol 13:109–239. doi: 10.1016/S0065-2881(08)60281-3 CrossRefGoogle Scholar
  41. Karasov WH, Diamond JM (1983) A simple method for measuring intestinal solute uptake in vitro. J Comp Physiol 152:105–116. doi: 10.1007/BF00689734 CrossRefGoogle Scholar
  42. Karasov WH, Diamond JM (1988) Interplay between physiology and ecology in digestion. Bioscience 38:602–611. doi: 10.2307/1310825 CrossRefGoogle Scholar
  43. Karasov WH, Martinez del Rio C (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, PrincetonGoogle Scholar
  44. Karasov WH, Pinshow B, Starck JM, Afik D (2004) Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): a comparison among fed, fasted, flood-restricted, and refed birds. Physiol Biochem Zool 77:149–160. doi: 10.1086/381465 PubMedCrossRefGoogle Scholar
  45. Koelz HR (1992) Gastric acid in vertebrates. Scand J Gastroentero 27:2–6. doi: 10.3109/00365529209095998 CrossRefGoogle Scholar
  46. Kramer DL, Bryant MJ (1995) Intestine length in the fishes of a tropical stream: 2. Relationships to diet––the long and short of a convoluted issue. Environ Biol Fish 42:129–141. doi: 10.1007/BF00001991 CrossRefGoogle Scholar
  47. Krogdahl Å, Bakke-McKellep AM (2005) Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp Biochem Physiol A 141:450–460. doi: 10.1016/j.cbpb.2005.06.002 CrossRefGoogle Scholar
  48. Krogdahl Å, Nordrum S, Sørensen M, Brudeseth L, Røsjø C (1999) Effects of diet composition on apparent nutrient absorption along the intestinal tract and of subsequent fasting on mucosal disaccharidase activities and plasma nutrient concentration in Atlantic salmon Salmo salar L. Aquacult Nutr 5:121–133. doi: 10.1046/j.1365-2095.1999.00095.x CrossRefGoogle Scholar
  49. Lignot JH, Helmstetter C, Secor SM (2005) Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus). Comp Biochem Physiol A 141:280–291. doi: 10.1016/j.cbpb.2005.05.005 CrossRefGoogle Scholar
  50. Mauchline J, Gordon JDM (1986) Foraging strategies of deep-sea fish. Mar Ecol Prog Ser 27:227–238. doi: 10.3354/meps027227 CrossRefGoogle Scholar
  51. McCauley SJ, Bjorndal KA (1999) Response to dietary dilution in an omnivorous freshwater turtle: implications for ontogenetic dietary shifts. Phyiol Biochem Zool 72:101–108. doi: 10.1086/316642 CrossRefGoogle Scholar
  52. McLeese JM, Bergeron M (1990) Fasting induces modifications of the endoplasmic reticulum in intestinal cells. J Electron Microsc Tech 16:156–168. doi: 10.1002/jemt.1060160108 CrossRefGoogle Scholar
  53. McMahon TE, Terrell JW (1982) Habitat suitability index models: channel catfish. US Fish Wld S Fish B FWS/OBS-82/10.2Google Scholar
  54. Mekapati J, Knight LC, Maurer AH, Fisher RS, Parkman HP (2008) Transsphincteric pH profile at the gastroesophageal junction. Clin Gastroenterol Hepatol 6:630–634. doi: 10.1016/j.cgh.2008.01.003 PubMedCrossRefGoogle Scholar
  55. Meldrum SJ, Watson BW, Riddle HC (1972) pH profile of gut as measured by radiotelemetry capsule. Brit Med J 2:104–106. doi: 10.1136/bmj.2.5805.104 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Misch DW (1980) Intestinal microvilli: responses to feeding and fasting. Eur J Cell Biol 21:269–279PubMedGoogle Scholar
  57. Navarro I, Gutiérrez J (1995) Fasting and starvation. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 4. Elsevier, Amsterdam, pp 393–434Google Scholar
  58. Ott BD, Secor SM (2007a) Adaptive regulation of digestive performance in the genus Python. J Exp Biol 210:340–356. doi: 10.1242/jeb.02626 PubMedCrossRefGoogle Scholar
  59. Ott BD, Secor SM (2007b) The specific dynamic action of boas and pythons. In: Henderson RW, Powell R (eds) Biology of boas and pythos. Eagle Mountain, Eagle Mountain, pp 299–310Google Scholar
  60. Papastamatious YP, Lowe CG (2004) Postprandial response of gastric pH in leopard shark (Triakis semifasciata) and its use to study foraging ecology. J Exp Biol 207:225–232. doi: 10.1242/jeb.00741 CrossRefGoogle Scholar
  61. Papastamatious YP, Lowe CG (2005) Variations in gastric acid secretion during periods of fasting between two species of shark. Comp Biochem Physiol A 141:210–214. doi: 10.1016/j.cbpb.2005.05.041 CrossRefGoogle Scholar
  62. Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69–96. doi: 10.1086/284623 CrossRefGoogle Scholar
  63. Pierce BA (1983) Grass carp status in the United States: a review. Environ Manage 7:151–160. doi: 10.1007/BF01867276 CrossRefGoogle Scholar
  64. Polunin NVC, Harmelin-Vivien M, Galzin R (1995) Contrasts in algal food processing among five herbivorous coral-reef fishes. J Fish Biol 47:455–465. doi: 10.1111/j.1095-8649.1995.tb01914.x CrossRefGoogle Scholar
  65. Raubenheimer D, Simpson SJ (1999) Integrating nutrition: a geometrical approach. Entomol Exp Appl 91:67–82. doi: 10.1023/A:1003682921131 CrossRefGoogle Scholar
  66. Reifel CW, Travill AA (1979) Structure and carbohydrate histochemistry of the intestine in ten teleostean species. J Morphol 162:343–359. doi: 10.1002/jmor.1051620305 CrossRefGoogle Scholar
  67. Rimmer DW, Wiebe WJ (1987) Fermentative microbial digestion in herbivorous fishes. J Fish Biol 31:229–236. doi: 10.1111/j.1095-8649.1987.tb05228.x CrossRefGoogle Scholar
  68. Schwalme K, Chouinard GA (1999) Seasonal dynamics in feeding, organ weights, and reproductive maturation of Atlantic cod (Gadus morhua) in the southern Gulf of St Lawrence. ICES J Mar Sci 56:303–319. doi: 10.1006/jmsc 1999.0458CrossRefGoogle Scholar
  69. Secor SM (2001) Regulation of digestive performance: a proposed adaptive response. Comp Biochem Physiol A 128:565–577. doi: 10.1016/S1095-6433(00)00325-1 CrossRefGoogle Scholar
  70. Secor SM (2003) Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus. J Exp Biol 206:1621–1630. doi: 10.1242/jeb.00300 PubMedCrossRefGoogle Scholar
  71. Secor SM (2005) Physiological responses to feeding, fasting, and estivation for anurans. J Exp Biol 208:2595–2608. doi: 10.1242/jeb.01659 PubMedCrossRefGoogle Scholar
  72. Secor SM (2008) Digestive physiology of the Burmese python: broad regulation of integrated performance. J Exp Biol 211:3767–3774. doi: 10.1242/jeb.023754 PubMedCrossRefGoogle Scholar
  73. Secor SM, Diamond JM (1995) Adaptive responses to feeding in Burmese pythons: pay before pumping. J Exp Biol 198:1313–1325PubMedGoogle Scholar
  74. Secor SM, Diamond JM (2000) Evolution of regulatory responses to feeding in snakes. Physiol Biochem Zool 73:123–141. doi: 10.1086/316734 PubMedCrossRefGoogle Scholar
  75. Secor SM, Lignot JH (2010) Morphological plasticity of vertebrate aestivation. In: Navas CA, Carvalho JE (eds) Aestivation: molecular and physiological aspects. Springer-Verlag, Berlin, pp 183–208. doi: 10.1007/978-3-642-02421-4_9
  76. Secor SM, Stein ED, Diamond JM (1994) Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol 266:G695–G705PubMedGoogle Scholar
  77. Shireman JV, Smith CR (1983) Synopsis of biological data on the grass carp, Ctenopharyngodon idella (Cuvier and Valenciennes, 1844). Food and Agriculture Organisation of the United Nations, RomeGoogle Scholar
  78. Sibley RM, Calow P (1986) Physiological ecology of animals: an evolutionary approach. Blackwells, OxfordGoogle Scholar
  79. Sis RF, Ives PJ, Jones DM, Lewis DH, Haensly WE (1979) The microscopic anatomy of the oesophagus, stomach and intestine of the channel catfish, Ictalurus punctatus. J Fish Biol 14:179–186. doi: 10.1111/j.1095-8649.1979.tb03508.x CrossRefGoogle Scholar
  80. Starck JM, Beese K (2002) Structural flexibility of the small intestine and liver of garter snakes in response to feeding and fasting. J Exp Biol 205:1377–1388PubMedGoogle Scholar
  81. Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  82. Wilson JM, Castro LFC (2010) Morphological diversity of the gastrointestinal tract in fishes. In: Grosell M, Farrell AP, Brauner CJ (eds) The multifunctional gut of fish. Elsevier, Oxford, pp 2–56. doi: 10.1016/S1546-5098(10)03001-3
  83. Wojnarowska F, Gray GM (1975) Intestinal surface peptide hydrolases: identification and characterization of three enzymes from rat brush border. Biochem Biophys Acta 403:147–160. doi: 10.1016/0005-2744(75)90018-2 PubMedGoogle Scholar
  84. Wright RD, Florey HW, Sanders AG (1957) Observations on the gastric mucosa of reptilia. Quart J Exp Physiol 42:1–14PubMedGoogle Scholar
  85. Youngberg CA, Wlodyga J, Schmatlz S, Dressman JB (1985) Radiotelemetric determination of gastrointestinal pH in four healthy beagles. Am J Vet Res 46:1516–1521PubMedGoogle Scholar
  86. Yúfera M, Moyano FJ, Astola A, Pousão-Ferreira P, Martínez-Rodríguez G (2012) Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNA expression. PLoS One 7(3):e33687. doi: 10.1371/journal.pone.0033687 PubMedCentralPubMedCrossRefGoogle Scholar
  87. Zeng LQ, Li FJ, Li XM, Cao ZD, Fu SJ, Zhang YG (2012) The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen). Comp Biochem Physiol A 162:200–211. doi: 10.1016/j.cbpa.2012.02.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ryan D. Day
    • 1
    • 3
  • Ian R. Tibbetts
    • 1
  • Stephen M. Secor
    • 2
  1. 1.School of Biological SciencesThe University of QueenslandSt LuciaAustralia
  2. 2.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA
  3. 3.Institute for Marine and Antarctic StudiesUniversity of TasmaniaTaroonaAustralia

Personalised recommendations