Journal of Comparative Physiology B

, Volume 184, Issue 2, pp 167–177 | Cite as

Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus

  • Karina Vincents Fisker
  • Johannes Overgaard
  • Jesper Givskov Sørensen
  • Stine Slotsbo
  • Martin Holmstrup
Original Paper

Abstract

Geographic variation in cold tolerance and associated physiological adaptations were investigated in the freeze tolerant enchytraeid Enchytraeus albidus (Oligochaeta). Specimens from Svalbard, Greenland (Nuuk), Iceland (Hólar and Mossfellsbær) and continental Europe [Norway (Bergen), Sweden (Kullen) and Germany] were reared in the laboratory in a common-garden experiment. The aim was to test for variations in minimum lethal temperature, freeze duration tolerance, carbohydrate reserves and metabolic rate among the populations. Cold tolerance was related to environmental temperature of the respective location. Populations from the coldest climatic regions were able to tolerate freezing down to at least −15 °C and endured being frozen at −5 °C for 27–48 days, respectively. Populations from milder climates had a lower freeze duration tolerance (about −9 °C) and endured −5 °C for a shorter period (between 9 and 16 days). Glucose accumulation and glycogen reserves varied significantly between populations, but was not related directly to cold tolerance. Metabolic rate varied significantly between populations, but was not significantly related to cold tolerance. The metabolic rates at −2 °C of frozen and unfrozen worms from Germany and Svalbard were tested. The metabolic depression due to freezing of these populations was relatively small (<50 %), suggesting that the large carbohydrate accumulations may also be important as fuel during long-term freezing at moderately low temperatures. Differences in metabolic depression may partly explain the difference in cold tolerance of these two populations, however, the mechanisms behind local adaptation to low winter temperatures in these enchytraeid populations seem more complex than earlier studies have indicated.

Keywords

Cryoprotectant Glucose Metabolic rate Cold tolerance Freeze duration 

Notes

Acknowledgments

We thank Prof. Bent Christensen, University of Copenhagen, Denmark, for the verification of the taxonomy of the enchytraeids and Vladimir Kostal, University of South Bohemia, Czech Republic, for constructive comments on an earlier version of the manuscript. Further, we thank Hans Malte, Aarhus University, Denmark, for helping with analysing CO2 data. This study was supported by Sapere Aude DFF-Starting grants from The Danish Council for Independent Research (J.O. and J.G.S.) and Danish Research Council (M.H.).

References

  1. Berman DI, Leirikh AN (1985) The ability of the earthworm Eisenia nordenskioldi (Eisen) (Lumbricidae, Oligochaeta) to endure subfreezing temperatures. Dokl Biol Sci 285(1–6):845–848Google Scholar
  2. Berman DI, Meshcheryakova EN, Alfimov AV, Leirikh AN (2001) Dispersal of earthworm Dendrobaena octaedra (Lumbricidae: oligochaeta) from Europe to North Asia is restricted by insufficient freeze tolerance. Dokl Akad Nauk 377(3):415–418Google Scholar
  3. Calderon S, Holmstrup M, Westh P, Overgaard J (2009) Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism. J Exp Biol 212(6):859–866PubMedCrossRefGoogle Scholar
  4. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43(1–2):3–15CrossRefGoogle Scholar
  5. Christensen B, Dozsa-Farkas K (2006) Invasion of terrestrial enchytraeids into two postglacial tundra’s: North-eastern Greenland and the Arctic Archipelago of Canada (Enchytraeidae, Oligochaeta). Polar Biol 29(6):454–466CrossRefGoogle Scholar
  6. Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177(6):738–751PubMedCrossRefGoogle Scholar
  7. Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of arctic soil organisms during winter. Arct Alp Res 27(4):364–370CrossRefGoogle Scholar
  8. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105(18):6668–6672PubMedCrossRefGoogle Scholar
  9. Didden WAM (1993) Ecology of terrestrial enchytraeidae. Pedobiologia 37(1):2–29Google Scholar
  10. Dozsa-Farkas K (1973) Some preliminary data on the frost tolerance of enchytraeidae. Opusc Zool (Budap) 11:95–97Google Scholar
  11. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17(1):167–178PubMedCrossRefGoogle Scholar
  12. Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos Soc 74(1):1–40PubMedCrossRefGoogle Scholar
  13. Hill RW, Wyse GA, Anderson M (2012) Animal physiology. Sinauer, MassachusettsGoogle Scholar
  14. Hoffmann AA, Parsons P (1991) Evolutionary genetics and environmental stress. Oxford University Press, OxfordGoogle Scholar
  15. Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 5(5):614–618CrossRefGoogle Scholar
  16. Holmstrup M, Overgaard J (2007) Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland. Cryobiology 55(1):80–86PubMedCrossRefGoogle Scholar
  17. Holmstrup M, Zachariassen KE (1996) Physiology of cold hardiness in earthworms. Comp Biochem Physiol A Physiol 115(2):91–101CrossRefGoogle Scholar
  18. Holmstrup M, Costanzo JP, Lee RE (1999) Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. J Comp Physiol B Biochem Syst Environ Physiol 169(3):207–214CrossRefGoogle Scholar
  19. Holmstrup M, Overgaard J, Bindesbøl AM, Pertoldi C, Bayley M (2007) Adaptations to overwintering in the earthworm Dendrobaena octaedra: genetic differences in glucose mobilisation and freeze tolerance. Soil Biol Biochem 39(10):2640–2650CrossRefGoogle Scholar
  20. Irwin JT, Lee RE (2002) Energy and water conservation in frozen vs. supercooled larvae of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera: Tephritidae). J Exp Zool 292(4):345–350PubMedCrossRefGoogle Scholar
  21. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241CrossRefGoogle Scholar
  22. Lauren A, Lappalainen M, Saari P, Kukkonen JVK, Koivusalo H, Piirainen S, Setala H, Sarjala T, Bylund D, Heinonen J, Nieminen M, Palviainen M, Launiainen S, Finer L (2012) Nitrogen and carbon dynamics and the role of enchytraeid worms in decomposition of L, F and H Layers of boreal mor. Water Air Soil Pollut 223(7):3701–3719CrossRefGoogle Scholar
  23. Lee RE, Costanzo JP (1998) Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu Rev Physiol 60:55–72PubMedCrossRefGoogle Scholar
  24. Muir TJ, Costanzo JP, Lee RE Jr (2008) Metabolic depression induced by urea in organs of the wood frog, Rana sylvatica: effects of season and temperature. J Exp Zool Part A Ecol Genet Physiol 309A(2):111–116CrossRefGoogle Scholar
  25. Nordström S, Rundgren S (1974) Environmental factors and lumbricid associations in southern Sweden. Pedobiologia 14(1):1–27Google Scholar
  26. Overgaard J, Slotsbo S, Holmstrup M, Bayley M (2007) Determining factors for cryoprotectant accumulation in the freeze-tolerant earthworm, Dendrobaena octaedra. J Exp Zool Part A Ecol Genet Physiol 307A(10):578–589CrossRefGoogle Scholar
  27. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42PubMedCrossRefGoogle Scholar
  28. Patrício Silva AL, Holmstrup M, Kostal V, Amorim MJB (2013) Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus. J Exp Biol 216:2732–2740CrossRefGoogle Scholar
  29. Ramløv H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 15:26–46PubMedCrossRefGoogle Scholar
  30. Rasmussen LM, Holmstrup M (2002) Geographic variation of freeze-tolerance in the earthworm Dendrobaena octaedra. J Comp Physiol B 172(8):691–698PubMedCrossRefGoogle Scholar
  31. Scholander PF, Flagg W, Hock RJ, Irving L (1953) Studies on the physiology of frozen plants and animals in the arctic. J Cell Comp Physiol 42(3):S1–S56CrossRefGoogle Scholar
  32. Sinclair BJ, Klok CJ, Chown SL (2004) Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. J Exp Biol 207(8):1287–1294PubMedCrossRefGoogle Scholar
  33. Sinclair BJ, Stinziano JR, Williams CM, MacMillan HA, Marshall KE, Storey KB (2013) Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. J Exp Biol 216(2):292–302PubMedCrossRefGoogle Scholar
  34. Slotsbo S, Maraldo K, Malmendal A, Nielsen NC, Holmstrup M (2008) Freeze tolerance and accumulation of cryoprotectants in the enchytraeid Enchytraeus albidus (Oligochaeta) from Greenland and Europe. Cryobiology 57(3):286–291PubMedCrossRefGoogle Scholar
  35. Storey KB (1988) Suspended animation: the molecular basis of metabolic depression. Can J Zool/Rev Can Zool 66(1):124–132CrossRefGoogle Scholar
  36. Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68(1):27–84PubMedGoogle Scholar
  37. Storey KB, Storey JM (1990) Metabolic-rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65(2):145–174PubMedCrossRefGoogle Scholar
  38. Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc Biol Sci Ser B 278(1713):1823–1830CrossRefGoogle Scholar
  39. Uvarov AV (1998) Respiration activity of Dendrobaena octaedra (Lumbricidae) under constant and diurnally fluctuating temperature regimes in laboratory microcosms. Eur J Soil Biol 34(1):1–10CrossRefGoogle Scholar
  40. Withers PC, Cooper CE (2010) Metabolic depression: a historical perspective. In: Navas CA, Carvalho JE (eds) Aestivation: Molecular and Physiological Aspects, vol 49. Progress in Molecular and Subcellular Biology. pp 1–23Google Scholar
  41. Zachariassen KE (1985) Physiology of cold tolerance in insects. Physiol Rev 65(4):799–832PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karina Vincents Fisker
    • 1
    • 2
  • Johannes Overgaard
    • 1
  • Jesper Givskov Sørensen
    • 2
  • Stine Slotsbo
    • 2
  • Martin Holmstrup
    • 2
  1. 1.Department of BioscienceAarhus UniversityAarhus CDenmark
  2. 2.Department of BioscienceAarhus UniversitySilkeborgDenmark

Personalised recommendations