Advertisement

Journal of Comparative Physiology B

, Volume 182, Issue 8, pp 1069–1080 | Cite as

Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation

  • Edison S. M. Carvalho
  • Sílvia F. Gregório
  • Deborah M. Power
  • Adelino V. M. Canário
  • Juan FuentesEmail author
Original Paper

Abstract

In the marine fish intestine luminal, HCO3 can remove divalent ions (calcium and magnesium) by precipitation in the form of carbonate aggregates. The process of epithelial HCO3 secretion is under endocrine control, therefore, in this study we aimed to characterize the involvement of transmembrane (tmACs) and soluble (sACs) adenylyl cyclases on the regulation of bicarbonate secretion (BCS) and water absorption in the intestine of the sea bream (Sparus aurata). We observed that all sections of sea bream intestine are able to secrete bicarbonate as measured by pH–Stat in Ussing chambers. In addition, gut sac preparations reveal net water absorption in all segments of the intestine, with significantly higher absorption rates in the anterior intestine that in the rectum. BCS and water absorption are positively correlated in all regions of the sea bream intestinal tract. Furthermore, stimulation of tmACs (10 μM FK + 500 μM IBMX) causes a significant decrease in BCS, bulk water absorption and short circuit current (Isc) in a region dependent manner. In turn, stimulation of sACs with elevated HCO3 results in a significant increase in BCS, and bulk water absorption in the anterior intestine, an action completely reversed by the sAC inhibitor KH7 (200 μM). Overall, the results reveal a functional relationship between BCS and water absorption in marine fish intestine and modulation by tmACs and sAC. In light of the present observations, it is hypothesized that the endocrine effects on intestinal BCS and water absorption mediated by tmACs are locally and reciprocally modulated by the action of sACs in the fish enterocyte, thus fine-tuning the process of carbonate aggregate production in the intestinal lumen.

Keywords

Bicarbonate secretion Intestinal tract Marine fish pH–Stat Soluble adenylyl cyclase cAMP Transmembrane adenylyl cyclase Ussing chamber Water absorption 

Notes

Acknowledgments

This research was funded by the Portuguese Foundation for Science and Technology project PTDC/MAR/104008/2008 (Ministry of Science and Higher Education, Portugal and European Social Funds) awarded to J.F.

References

  1. Al-Jandal NJ, Whittamore JM, Santos EM, Wilson RW (2011) The influence of 17β-estradiol on intestinal calcium carbonate precipitation and osmoregulation in seawater-acclimated rainbow trout (Oncorhynchus mykiss). J Exp Biol 214:2791–2798PubMedCrossRefGoogle Scholar
  2. Bakker R, Dekker K, DeJonge HR, Groot JA (1993) VIP, serotonin and epinephrine modulate the ion selectivity of tight junctions for goldfish intestine. Am J Physiol 264:362–368Google Scholar
  3. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Nat Acad Sci 96:79–84PubMedCrossRefGoogle Scholar
  4. Caceres PS, Ares GR, Ortiz PA (2009) cAMP stimulates apical exocytosis of the renal Na+−K+−2Cl cotransporter NKCC2 in the thick ascending limb: role of protein kinase A. J Biol Chem 284:24965–24971PubMedCrossRefGoogle Scholar
  5. Cerdà J, Finn RN (2010) Piscine aquaporins: an overview of recent advances. J Exp Zool A Ecol Genet Physiol 313A:623–650CrossRefGoogle Scholar
  6. Clarke LL, Harline MC (1998) Dual role of CFTR in cAMP-stimulated HCO3 secretion across murine duodenum. Am J Physiol 274:G718–G726PubMedGoogle Scholar
  7. Cooper CA, Whittamore JM, Wilson RW (2010) Ca2+-driven intestinal HCO3 secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport. Am J Physiol Regul Integr Comp Physiol 298:R870–R876PubMedCrossRefGoogle Scholar
  8. Fuentes J, Eddy FB (1997a) Drinking in freshwater, euryhaline and marine teleosts. In: Hazon N, Eddy FB, Flik G (eds) Ionic regulation in animals. Springer, Heidelberg, pp 135–149Google Scholar
  9. Fuentes J, Eddy FB (1997b) Effect of manipulation of the renin-angiotensin system in control of drinking in juvenile Atlantic salmon (Salmo salar L) in fresh water and after transfer to sea water. J Comp Physiol B 167:438–443PubMedCrossRefGoogle Scholar
  10. Fuentes J, Bury NR, Carroll S, Eddy FB (1996) Drinking in Atlantic salmon presmolts (Salmo solar L.) and juvenile rainbow trout (Oncorhynchus mykiss Walbaum) in response to cortisol and sea water challenge. Aquaculture 141:129–137CrossRefGoogle Scholar
  11. Fuentes J, Figueiredo J, Power DM, Canario AV (2006) Parathyroid hormone-related protein regulates intestinal calcium transport in sea bream (Sparus auratus). Am J Physiol Regul Integr Comp Physiol 291:R1499–R1506PubMedCrossRefGoogle Scholar
  12. Fuentes J, Guerreiro PM, Modesto T, Rotllant J, Canario AVM, Power DM (2007) A PTH/PTHrP receptor antagonist blocks the hypercalcemic response to estradiol-17β. Am J Physiol Regul Integr Comp Physiol 293:R956–R960PubMedCrossRefGoogle Scholar
  13. Fuentes J, Power DM, Canario AVM (2010) Parathyroid hormone-related protein-stanniocalcin antagonism in regulation of bicarbonate secretion and calcium precipitation in a marine fish intestine. Am J Physiol Regul Integr Comp Physiol 299:R150–R158PubMedCrossRefGoogle Scholar
  14. Genz J, Grosell M (2011) Fundulus heteroclitus acutely transferred from seawater to high salinity require few adjustments to intestinal transport associated with osmoregulation. Comp Biochem Physiol A 160:156–165CrossRefGoogle Scholar
  15. Genz J, Taylor JR, Grosell M (2008) Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid-base balance in Opsanus beta. J Exp Biol 211:2327–2335PubMedCrossRefGoogle Scholar
  16. Grosell M (2006) Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 209:2813–2827PubMedCrossRefGoogle Scholar
  17. Grosell M (2011) Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the oceanic inorganic carbon cycle. Acta Physiol 202:421–434CrossRefGoogle Scholar
  18. Grosell M, McDonald MD, Wood CM, Walsh PJ (2004) Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products. Aquat Toxicol 68:249–262PubMedCrossRefGoogle Scholar
  19. Grosell M, Wood CM, Wilson RW, Bury NR, Hogstrand C, Rankin C, Jensen FB (2005) Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am J Physiol Regul Integr Comp Physiol 288:R936–R946PubMedCrossRefGoogle Scholar
  20. Guerreiro PM, Fuentes J, Power DM, Ingleton PM, Flik G, Canario AV (2001) Parathyroid hormone-related protein: a calcium regulatory factor in sea bream (Sparus aurata L.) larvae. Am J Physiol Regul Integr Comp Physiol 281:R855–R860PubMedGoogle Scholar
  21. Guerreiro PM, Fuentes J, Canario AV, Power DM (2002) Calcium balance in sea bream (Sparus aurata): the effect of oestradiol-17beta. J Endocrinol 173:377–385PubMedCrossRefGoogle Scholar
  22. Guerreiro PM, Rotllant J, Fuentes J, Power DM, Canario AVM (2006) Cortisol and parathyroid hormone-related peptide are reciprocally modulated by negative feedback. Gen Comp Endocrinol 148:227–235PubMedCrossRefGoogle Scholar
  23. Guffey S, Esbaugh A, Grosell M (2011) Regulation of apical H+-ATPase activity and intestinal HCO3 secretion in marine fish osmoregulation. Am J Physiol Regul Integr Comp Physiol 301:R1682–R1691PubMedCrossRefGoogle Scholar
  24. Hallows KR, Wang H, Edinger RS, Butterworth MB, Oyster NM, Li H, Buck J, Levin LR, Johnson JP, Pastor-Soler NrM (2009) Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J Biol Chem 284:5774–5783PubMedCrossRefGoogle Scholar
  25. Hamad AM, Range S, Holland E, Knox AJ (1997) Regulation of cGMP by soluble and particulate guanylyl cyclases in cultured human airway smooth muscle. Am J Physiol 273:L807–L813PubMedGoogle Scholar
  26. Hirano T, Mayer-Gostan N (1976) Eel Esophagus as an Osmoregulatory Organ. Proc Nat Acad Sci USA 73:1348–1350PubMedCrossRefGoogle Scholar
  27. Kurita Y, Nakada T, Kato A, Doi H, Mistry AC, Chang MH, Romero MF, Hirose S (2008) Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish. Am J Physiol Regul Integr Comp Physiol 294:R1402–R1412PubMedCrossRefGoogle Scholar
  28. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR (2003) Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 278:15922–15926PubMedCrossRefGoogle Scholar
  29. Loretz CA (1995) Electrophysiology of ion transport in teleost intestinal cells. In: Wood CM, Shuttleworth TJ (eds) Cellular and molecular approaches to fish ionic regulation fish physiology., vol 14Academic Press, San Diego, pp 25–56Google Scholar
  30. Marshall WS, Grosell M (2006) Ion transport, osmoregulation and acid-base balance. In: Evans DH, Claiborne JB, Boca Raton FL (eds) The physiology of fishes. CRC, USA, pp 177–230Google Scholar
  31. Marshall WS, Howard JA, Cozzi RR, Lynch EM (2002) NaCl and fluid secretion by the intestine of the teleost Fundulus heteroclitus: involvement of CFTR. J Exp Biol 205:745–758PubMedGoogle Scholar
  32. Martin LC, Hickman ME, Curtis CM, MacVinish LJ, Cuthbert AW (1998) Electrogenic bicarbonate secretion in mouse gallbladder. Am J Physiol Gastrointest liver Physiol 274:G1045–G1052Google Scholar
  33. Martinez A-S, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005) Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. Am J Physiol Regul Integr Comp Physiol 288:R1733–R1743PubMedCrossRefGoogle Scholar
  34. Parmelee JT, Renfro JL (1983) Esophageal desalination of seawater in flounder: role of active sodium-transport. Am J Physiol 245:R888–R893PubMedGoogle Scholar
  35. Quinton PM (2010) Role of epithelial HCO3 transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 299:1222–1233CrossRefGoogle Scholar
  36. Raldúa D, Otero D, Fabra M, Cerdà J (2008) Differential localization and regulation of two aquaporin-1 homologs in the intestinal epithelia of the marine teleost Sparus aurata. Am J Physiol Regul Integr Comp Physiol 294:R993–R1003PubMedCrossRefGoogle Scholar
  37. Rotllant J, Guerreiro PM, Redruello B, Fernandes H, Apolonia L, Anjos L, Canario AV, Power DM (2006) Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes. Cell Tissue Res 323:333–341PubMedCrossRefGoogle Scholar
  38. Schmid A, Sutto Z, Nlend M-C, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M (2007) Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J Gen Physiol 130:99–109PubMedCrossRefGoogle Scholar
  39. Seidler U, Blumenstein I, Kretz A, Viellard-Baron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca2+-dependent HCO3 secretion. J Physiol 505:411–423PubMedCrossRefGoogle Scholar
  40. Smith JJ, Welsh MJ (1992) cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J Clin Invest 89:1148–1153PubMedCrossRefGoogle Scholar
  41. Sopory S, Kaur T, Visweswariah SS (2004) The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal 16:681–692PubMedCrossRefGoogle Scholar
  42. Taylor JR, Mager EM, Grosell M (2010) Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3 secretion, contributing to marine fish osmoregulation. J Exp Biol 213:459–468PubMedCrossRefGoogle Scholar
  43. Tresguerres M, Levin LR, Buck J, Grosell M (2010a) Modulation of NaCl absorption by HCO3 in the marine teleost intestine is mediated by soluble adenylyl cyclase. Am J Physiol Regul Integr Comp Physiol 299:R62–R71PubMedCrossRefGoogle Scholar
  44. Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J (2010b) Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. Proc Nat Acad Sci 107:442–447PubMedCrossRefGoogle Scholar
  45. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79:1277–1288PubMedCrossRefGoogle Scholar
  46. Trischitta F, Denaro MG, Faggio C, Mandolfino M, Schettino T (1996) Dfferent effects of cGMP and cAMP in the intestine of the European eel, Anguilla anguilla. J Comp Physiol B 166:30–36PubMedCrossRefGoogle Scholar
  47. Trischitta F, Denaro MG, Faggio C (1999) Effects of acetylcholine, serotonin and noradrenaline on ion transport in the middle and posterior part of Anguilla anguilla intestine. J Comp Physiol B 169:370–376PubMedCrossRefGoogle Scholar
  48. Whittamore J (2011) Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B Biochem Syst Environ Physiol:1–39Google Scholar
  49. Whittamore JM, Cooper CA, Wilson RW (2010) HCO3 secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Physiol Regul Integr Comp Physiol 298:R877–R886PubMedCrossRefGoogle Scholar
  50. Wilson RW, Grosell M (2003) Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis. Biochim Biophys Acta 1618:163–174PubMedCrossRefGoogle Scholar
  51. Wilson RW, Gilmour KM, Henry RP, Wood CM (1996) Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid-base balance? J Exp Biol 199:2331–2343PubMedGoogle Scholar
  52. Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish: why and how? Biochimica Et Biophysica Acta-Biomembranes 1566:182–193CrossRefGoogle Scholar
  53. Wood CM, Grosell M (2012) Independence of net water flux from paracellular permeability in the intestine of Fundulus heteroclitus, a euryhaline teleost. J Exp Biol 215:508–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Edison S. M. Carvalho
    • 1
  • Sílvia F. Gregório
    • 1
  • Deborah M. Power
    • 1
  • Adelino V. M. Canário
    • 1
  • Juan Fuentes
    • 1
    Email author
  1. 1.Centre of Marine Sciences (CCMar), CIMAR-Laboratório AssociadoUniversidade do AlgarveFaroPortugal

Personalised recommendations