Journal of Comparative Physiology B

, Volume 182, Issue 8, pp 1095–1116 | Cite as

Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae)

  • Richard O. Prum
  • Amy M. LaFountain
  • Julien Berro
  • Mary Caswell Stoddard
  • Harry A. Frank
Original Paper


Carotenoid pigments were extracted from 29 feather patches from 25 species of cotingas (Cotingidae) representing all lineages of the family with carotenoid plumage coloration. Using high-performance liquid chromatography (HPLC), mass spectrometry, chemical analysis, and 1H-NMR, 16 different carotenoid molecules were documented in the plumages of the cotinga family. These included common dietary xanthophylls (lutein and zeaxanthin), canary xanthophylls A and B, four well known and broadly distributed avian ketocarotenoids (canthaxanthin, astaxanthin, α-doradexanthin, and adonixanthin), rhodoxanthin, and seven 4-methoxy-ketocarotenoids. Methoxy-ketocarotenoids were found in 12 species within seven cotinga genera, including a new, previously undescribed molecule isolated from the Andean Cock-of-the-Rock Rupicola peruviana, 3′-hydroxy-3-methoxy-β,β-carotene-4-one, which we name rupicolin. The diversity of cotinga plumage carotenoid pigments is hypothesized to be derived via four metabolic pathways from lutein, zeaxanthin, β-cryptoxanthin, and β-carotene. All metabolic transformations within the four pathways can be described by six or seven different enzymatic reactions. Three of these reactions are shared among three precursor pathways and are responsible for eight different metabolically derived carotenoid molecules. The function of cotinga plumage carotenoid diversity was analyzed with reflectance spectrophotometry of plumage patches and a tetrahedral model of avian color visual perception. The evolutionary history of the origin of this diversity is analyzed phylogenetically. The color space analyses document that the evolutionarily derived metabolic modifications of dietary xanthophylls have resulted in the creation of distinctive orange-red and purple visual colors.


Plumage coloration Color space modeling Phylogeny 



The authors would like to thank Dr. Shanti Kaligotla-Ghosh for conducting the 1H-NMR analysis, and Dr. Dennis Hill of the UConn Biotechnology and Bioservices Center for carrying out the high-resolution mass spectrometry. We also thank Dr. Tomáš Polívka for providing the rhodoxanthin standard. ROP thanks the Ikerbasque Foundation and the Donostia International Physics Center for research support. HAF thanks the University of Connecticut Research Foundation. Feather specimens for the analysis and reflectance measurements were kindly provided by the Philadelphia Academy of Natural Sciences (ANSP), Yale Peabody Museum of Natural History (YPM), University of Kansas Natural History Museum (KU), and the American Museum of Natural History (AMNH), and to Nate Rice for specimen loan from the Philadelphia Academy of Natural Sciences. Thanks to Joel Cracraft, George Barrowclough, and Paul Sweet for facilitating our work at the American Museum. We thank Jeffery Townsend for helpful discussion of metabolic modeling, and three anonymous reviewers for comments on the manuscript. The research was supported by the Yale University W. R. Coe Fund. We kindly thank Nick Athanas, Tanguy Deville, and Ciro Albano for permission to reproduce their lovely images of the plumages of wild cotinga species.

Supplementary material

360_2012_677_MOESM1_ESM.docx (5.2 mb)
Supplementary material 1 (DOCX 5285 kb)


  1. Andersson S, Prager EM, Johansson EIA (2007) Carotenoid content and reflectances of yellow and red nuptial plumages of widowbirds (Euplectes spp.). Funct Ecol 21:272–281CrossRefGoogle Scholar
  2. Bhosale P, Zhao DY, Serban B, Bernstein PS (2007) Identification of the 3-methoxyzeaxanthin as a novel age-related carotenoid metabolite in the human macula. Invest Ophthalmol Vis Sci 48:1435–1440PubMedCrossRefGoogle Scholar
  3. Endler JA, Wescott DA, Madden JR, Tobson T (2005) Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59:1795–1818PubMedGoogle Scholar
  4. Eugster CH (1995) Chemical derivatization: microscale tests for the presence of common functional groups in carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Isolation and analysis. Birkhauser, BostonGoogle Scholar
  5. Fattorusso E, Lanzotti A, Magno S, Mayol L (1992) Thorexanthin, a new carotenoid pigment from the Caribbean sponge Thorecta horridus. Z Naturforsch 47:1477–1479Google Scholar
  6. Goodwin TW (1980) The biochemistry of the carotenoids. Volume 1 plants. Chapman and Hall, LondonCrossRefGoogle Scholar
  7. Hill GE, McGraw KJ (eds) (2006a) Bird Coloration, Vol. 1, Mechanisms and Measurement. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  8. Hill GE, McGraw KJ (eds) (2006b) Bird Coloration, Vol. 2, Function and Evolution. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  9. Hudon J, Anciaes M, Bertracche V, Stradi R (2007) Plumage carotenoids of the Pin-tailed Manakin (Ilicura militaris): Evidence for the endogenous production of rhodoxanthin from a colour variant. Comp Biochem Physiol B 147:402–411PubMedCrossRefGoogle Scholar
  10. Lafountain A, Kaligota S, Cawley S, Riedl K, Schwartz S, Frank HA, Prum RO (2010) Novel methoxy-carotenoids from the burgundy-colored plumage of the Pompadour Cotinga Xipholena punicea. Arch Biochem Biophys 504:142–153PubMedCrossRefGoogle Scholar
  11. Liaaen-Jensen S, Renstrøm B, Ramdahl T, Hallenstvet M, Bergquist P (1982) Carotenoids of marine sponges. Biochem Syst Ecol 10:167–174CrossRefGoogle Scholar
  12. Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67:771–783CrossRefGoogle Scholar
  13. Mattern I, Völker O (1955) Die shwarzroten und violetten lipochromatischen Federfarben der Cotingiden. Naturwissenschaften 22:612–613CrossRefGoogle Scholar
  14. McGraw KJ (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird Coloration, vol. 1, mechanisms and measurements. Harvard University Press, CambridgeGoogle Scholar
  15. McGraw KJ, Nogare MC (2005) Distribution of unique red feather pigments in parrots. Biol Lett 1:38–43PubMedCrossRefGoogle Scholar
  16. McGraw KJ, Schuetz JG (2004) The evolution of carotenoid coloration in estrildid finches: a biochemical analysis. Comp Biochem Physiol B 139:45–51PubMedCrossRefGoogle Scholar
  17. Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855–861PubMedCrossRefGoogle Scholar
  18. Ohlson JI, Prum RO, Ericson PGP (2007) A molecular phylogeny of the cotingas (Aves: Cotingidae). Mol Phylogenet Evol 42:25–37PubMedCrossRefGoogle Scholar
  19. Prager M, Johansson EIA, Andersson S (2009) Differential ability of carotenoid C4-oxygenation in yellow and red bishop species (Euplectes spp.). Comp Biochem Physiol B 154:373–380PubMedCrossRefGoogle Scholar
  20. Prum RO, Rice NH, Mobley JA, Dimmick WW (2000) A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk 117:236–241CrossRefGoogle Scholar
  21. Schmidt WJ (1956) Polarisationsoptik und Farberscheinungen der Lipochromaführenden Federäste von Xipholena lamellipennis. Zeitschrift für Zellforschung 45:152–175Google Scholar
  22. Snow DW (1982) The cotingas. Cornell University Press, IthacaGoogle Scholar
  23. Snow DW (2004) Family Cotingidae (Cotingas). In: Del hoyo J, Elliot A, Christie DA (eds) Handbook of the birds of the world. Lynx Editions, BarcelonaGoogle Scholar
  24. Stoddard MC, Prum RO (2008) Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new word buntings. Am Nat 171:755–776PubMedCrossRefGoogle Scholar
  25. Stoddard MC, Prum RO (2011) How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol 22:1042–1052Google Scholar
  26. Stradi R, Celetano G, Rossi E, Rovati G, Pastore M (1995) Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp Biochem Physiol B 110:131–143CrossRefGoogle Scholar
  27. Stradi R, Rossi E, Celetano G, Bellardi B (1996) Carotenoids in bird plumage: the pattern in three Loxia species and in Pinicola enucleator. Comp Biochem Physiol B 113:427–432CrossRefGoogle Scholar
  28. Stradi R, Pini E, Celetano G (2001) Carotenoids in bird plumage: the complement of red pigments in the plumage of wild and captive bullfinch (Pyrrhula pyrrhula). Comp Biochem Physiol B 128:529–535PubMedCrossRefGoogle Scholar
  29. Tello JG, Moyle RG, Marchese DJ, Cracraft J (2009) Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannides). Cladistics 25:429–467CrossRefGoogle Scholar
  30. Völker O (1952) Die Lipochrome in den Federn der Cotingiden. Journal für Ornithologie 93:122–129CrossRefGoogle Scholar
  31. Völker O (1955) Die schwarzroten und violetten lipochromatischen Federfarben der Cotingiden. Naturwissenschaften 42:612–613Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Richard O. Prum
    • 1
    • 2
  • Amy M. LaFountain
    • 3
  • Julien Berro
    • 4
  • Mary Caswell Stoddard
    • 5
  • Harry A. Frank
    • 3
  1. 1.Department of Ecology and Evolutionary Biology and Peabody Museum of Natural HistoryYale UniversityNew HavenUSA
  2. 2.Donostia International Physics Center (DIPC)Paseo Manuel de Lardizabal 3DonostiaSpain
  3. 3.Department of ChemistryUniversity of ConnecticutStorrsUSA
  4. 4.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA
  5. 5.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations