Journal of Comparative Physiology B

, Volume 182, Issue 8, pp 1015–1045 | Cite as

Glucose metabolism in fish: a review

  • Sergio Polakof
  • Stéphane Panserat
  • José L. Soengas
  • Thomas W. Moon
Review

Abstract

Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.

Keywords

Glucose metabolism Fish Glucosensing Dietary carbohydrate Liver Muscle Brain 

Abbreviations

AMPK

5′ AMP-activated protein kinase

BB

Brockmann bodies

CCK

Cholecystokinin

G6Pase

Glucose-6-phosphatase (EC 3.1.3.9.)

GE neurons

Glucose-excited neurons

GHRL

Ghrelin

GI neurons

Glucose-inhibited neurons

GIP

Glucose-dependent insulinotropic polypeptide

GIT

Gastrointestinal tract

GLP-1

Glucagon-like peptide

GLUT1, 2, 3, 4

Facilitated glucose transporters

GPase

Glycogen phosphorylase (EC 2.4.1.1)

GSase

Glycogen synthase (EC 2.4.1.11.)

GK

Glucokinase (EC 2.7.1.2.)

KATP

ATP-sensitive potassium channel

mTOR

Mammalian target of rapamycin

NPY

Neuropeptide Y

PK

Pyruvate kinase (EC 2.7.1.40.)

SS

Somatostatins

Notes

Acknowledgments

The authors would like to acknowledge grants that have supported their studies on carbohydrate use by fish: TWM, Natural Sciences and Engineering Research Council of Canada Discovery Grants; SP and TWM, France-Canada Research Fund grant. JLS, grants from Ministerio de Ciencia e Innovación and FEDER (AGL2004-08137-c04-03/ACU, AGL2007-65744-C03-01/ACU, and AGL2010–22247-C03-03), Xunta de Galicia (Consolidación en estructuración de unidades de investigación competitivas), and Universidade de Vigo (Contrato-Programa grupos de investigación consolidados). S. Panserat, grants from European commission (CT95-0174), Aquitaine Region (CCRRDT: 960308003; CCRRDT: 2051303004AB), National Research Agency (ANR-08-JCJC-0025) and INRA PHASE Department.

References

  1. Aguilar AJ, Conde-Sieira M, Polakof S, Miguez JM, Soengas JL (2010) Central leptin treatment modulates brain glucosensing function and peripheral energy metabolism of rainbow trout. Peptides 31:1044–1054PubMedCrossRefGoogle Scholar
  2. Aguilar AJ, Conde-Sieira M, Lopez-Patiño MA, Miguez JM, Soengas JL (2011) In vitro leptin treatment of rainbow trout hypothalamus and hindbrain affects glucosensing and gene expression of neuropeptides involved in food intake regulation. Peptides 32:232–240PubMedCrossRefGoogle Scholar
  3. Al-Tameemi R, Aldubaikul A, Salman NA (2010) Comparative study of α-amylase activity in three Cyprinid species of different feeding habits from Southern Iraq. Turkish J Fish Aquat Sci 10:411–414Google Scholar
  4. Anderson JW (1974) Glucose metabolism in jejunal mucosa of fed, fasted, and streptozotocin-diabetic rats. Am J Physiol 226:226–229PubMedGoogle Scholar
  5. Andoh T (2007) Amino acids are more important insulinotropins than glucose in a teleost fish, barfin flounder (Verasper moseri). Gen Comp Endocrinol 151:308–317PubMedCrossRefGoogle Scholar
  6. Barciela P, Soengas JL, Rey P, Aldegunde M, Rozas G (1993) Carbohydrate metabolism in several tissues of rainbow trout, Oncorhynchus mykiss, is modified during ovarian recrudescence. Comp Biochem Physiol B Biochem Mol Biol 106:943–948Google Scholar
  7. Barma P, Dey D, Basu D, Roy SS, Bhattacharya S (2006) Nutritionally induced insulin resistance in an Indian perch: a possible model for type 2 diabetes. Curr Sci 90:188–194Google Scholar
  8. Barton BA, Schreck CB, Barton LD (1987) Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis Aquat Org 2:173–185CrossRefGoogle Scholar
  9. Bean K, Nemelka K, Canchola P, Hacker S, Sturdivant RX, Rico PJ (2008) Effects of housing density on Long Evans and Fischer 344 rats. Lab Anim (NY) 37:421–428CrossRefGoogle Scholar
  10. Beccaria C, Diaz JP, Connes R, Chatain B (1991) Organogenesis of the exocrine pancreas in the sea bass, Dicentrarchus labrax L., reared extensively and intensively. Aquaculture 99:339–354CrossRefGoogle Scholar
  11. Behall K, Scholfield D, Hallfrisch J, Kelsay J, Reiser S (1984) Seasonal variation in plasma glucose and hormone levels in adult men and women. Am J Clin Nutr 40:1352–1356PubMedGoogle Scholar
  12. Bentley PJ, Follett BK (1965) The effects of hormones on the carbohydrate metabolism of the lamprey, Lampetra fluviatilis. J Endocrinol 31:127–137PubMedCrossRefGoogle Scholar
  13. Bergman RN, Ader M, Finegood DT, Pacini G (1984) Extrapancreatic effect of somatostatin infusion to increase glucose clearance. Am J Physiol 247:E370–E379PubMedGoogle Scholar
  14. Bever K, Chenoweth M, Dunn A (1981) Amino acid gluconeogenesis and glucose turnover in kelp bass (Paralabrax sp.). Am J Physiol Regul Integr Comp Physiol 240:R246–R252Google Scholar
  15. Bischoff A, Michel MC (1998) Neuropeptide Y lowers blood glucose in anaesthetized rats via a Y5 receptor subtype. Endocrinology 139:3018–3021PubMedCrossRefGoogle Scholar
  16. Blasco J, Fernández-Borrás J, Marimon I, Requena A (1996) Plasma glucose kinetics and tissue uptake in brown trout in vivo: effect of an intravascular glucose load. J Comp Physiol B Biochem Syst Environ Physiol 165:534–541CrossRefGoogle Scholar
  17. Blasco J, Marimon I, Viaplana I, Fernández-Borrás J (2001) Fate of plasma glucose in tissues of brown trout in vivo: effects of fasting and glucose loading. Fish Physiol Biochem 24:247–258CrossRefGoogle Scholar
  18. Borrebaek B, Christophersen B (2000) Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after differential dietary treatments. Comp Biochem Physiol B Biochem Mol Biol 125:387–393PubMedCrossRefGoogle Scholar
  19. Bouraoui L, Capilla E, Gutierrez J, Navarro I (2010) Insulin and insulin-like growth factor I signaling pathways in rainbow trout (Oncorhynchus mykiss) during adipogenesis and their implication in glucose uptake. Am J Physiol Regul Integr Comp Physiol 299:R33–R41PubMedCrossRefGoogle Scholar
  20. Buddington RK, Hilton JW (1987) Intestinal adaptations of rainbow trout to changes in dietary carbohydrate. Am J Physiol Gastrointest Liver Physiol 253:G489–G496Google Scholar
  21. Buddington RK, Chen JW, Diamond J (1987) Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J Physiol 393:261–281PubMedGoogle Scholar
  22. Burcelin R (2010) The gut-brain axis: a major glucoregulatory player. Diabetes Metab 36(Suppl 3):S54–S58PubMedCrossRefGoogle Scholar
  23. Caamano-Tubio RI, Perez-Maceira J, Aldegunde M (2010) Homeostasis of glucose in the rainbow trout Oncorhynchus mykiss Walbaum: the role of serotonin. J Exp Biol 213:1813–1821CrossRefGoogle Scholar
  24. Capilla E, Díaz M, Gutiérrez J, Planas JV (2002) Physiological regulation of the expression of a GLUT4 homolog in fish skeletal muscle. Am J Physiol Endocrinol Metab 283:E44–E49PubMedGoogle Scholar
  25. Capilla E, Médale F, Navarro I, Panserat S, Vachot C, Kaushik S, Gutiérrez J (2003) Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul Pept 110:123–132PubMedCrossRefGoogle Scholar
  26. Capilla E, Díaz M, Albalat A, Navarro I, Pessin JE, Keller K, Planas JV (2004a) Functional characterization of an insulin-responsive glucose transporter (GLUT4) from fish adipose tissue. Am J Physiol Endocrinol Metab 287:E348–E357PubMedCrossRefGoogle Scholar
  27. Capilla E, Médale F, Panserat S, Vachot C, Rema P, Gomes E, Kaushik S, Navarro I, Gutiérrez J (2004b) Response of hexokinase enzymes and the insulin system to dietary carbohydrates in the common carp, Cyprinus carpio. Reprod Nutr Dev 44:233–242PubMedCrossRefGoogle Scholar
  28. Carneiro NM, Amaral AD (1983) Effects of insulin and glucagon on plasma glucose levels and glycogen content in organs of the freshwater teleost Pimelodus maculatus. Gen Comp Endocrinol 49:115–121PubMedCrossRefGoogle Scholar
  29. Caruso MA, Sheridan MA (2011) New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 173:227–247PubMedCrossRefGoogle Scholar
  30. Caseras A, Metón I, Fernández F, Baanante IV (2000) Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata). Biochim Biophys Acta 1493:135–141PubMedCrossRefGoogle Scholar
  31. Caseras A, Metón I, Vives C, Egea M, Fernández F, Baanante IV (2002) Nutritional regulation of glucose-6-phosphatase gene expression in liver of the gilthead sea bream (Sparus aurata). Br J Nutr 88:607–614PubMedCrossRefGoogle Scholar
  32. Castillo J, Codina M, Martínez ML, Navarro I, Gutiérrez J (2004) Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. Am J Physiol Regul Integr Comp Physiol 286:R935–R941PubMedCrossRefGoogle Scholar
  33. Castillo J, Crespo D, Capilla E, Diaz M, Chauvigne F, Cerda J, Planas JV (2009) Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am J Physiol Regul Integr Comp Physiol 297:R1570–R1581PubMedCrossRefGoogle Scholar
  34. Cerdá-Reverter JM, Sorbera LA, Carrillo M, Zanuy S (1999) Energetic dependence of NPY-induced LH secretion in a teleost fish (Dicentrarchus labrax). Am J Physiol Regul Integr Comp Physiol 277:1627–1634Google Scholar
  35. Chan AS, Horn MH, Dickson KA, Gawlicka A (2004) Digestive enzyme activities in carnivores and herbivores: comparisons among four closely related prickleback fishes (Teleostei: Stichaeidae) from a California rocky intertidal habitat. J Fish Biol 65:848–858CrossRefGoogle Scholar
  36. Chavin W, Young JE (1970) Factors in the determination of normal serum glucose levels of goldfish, Carassius auratus L. Comp Biochem Physiol 33:629–653PubMedCrossRefGoogle Scholar
  37. Chen X-Q, Dong J, Niu C-Y, Fan J-M, Du J-Z (2007) Effects of hypoxia on glucose, insulin, glucagon, and modulation by corticotropin-releasing factor receptor type 1 in the rat. Endocrinology 148:3271–3278PubMedCrossRefGoogle Scholar
  38. Choi IY, Seaquist ER, Gruetter R (2003) Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72:25–32PubMedCrossRefGoogle Scholar
  39. Chow BKC, Moon TW, Hoo RLC, Yeung CM, Müller M, Christos PJ, Mojsov S (2004) Identification and characterization of a glucagon receptor from the goldfish Carassius auratus: implications for the evolution of the ligand specificity of glucagon receptors in vertebrates. Endocrinology 145:3273–3288PubMedCrossRefGoogle Scholar
  40. Conde-Sieira M, Aguilar AJ, Lopez-Patiño MA, Miguez JM, Soengas JL (2010a) Stress alters food intake and glucosensing response in hypothalamus, hindbrain, liver, and Brockmann bodies of rainbow trout. Physiol Behav 101:483–493PubMedCrossRefGoogle Scholar
  41. Conde-Sieira M, Agulleiro MJ, Aguilar AJ, Miguez JM, Cerda-Reverter JM, Soengas JL (2010b) Effect of different glycaemic conditions on gene expression of neuropeptides involved in control of food intake in rainbow trout; interaction with stress. J Exp Biol 213:3858–3865PubMedCrossRefGoogle Scholar
  42. Connors TJ, Schneider MJ, Genoway RG, Barraclough SA (1978) Effect of acclimation temperature on plasma levels of glucose and lactate in rainbow trout, Salmo gairdneri. J Exp Zool 206:443–449PubMedCrossRefGoogle Scholar
  43. Cooperstein SJ, Lazarow A (1969) Uptake of glucose by islet of Langerhans and other tissues of toadfish (Opsanus tau). Am J Physiol 217:1784–1788PubMedGoogle Scholar
  44. Cornish IME, Moon TW (1986) The glucose and lactate kinetics of American eels, Anguilla rostrata (LeSueur), under MS 222 anaesthesia. J Fish Biol 28:1–8CrossRefGoogle Scholar
  45. Correa CF, de Aguiar LH, Lundstedt LM, Moraes G (2007) Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comp Biochem Physiol A Mol Integr Physiol 147:857–862PubMedCrossRefGoogle Scholar
  46. Cowey CB, Adron JW, Brown DA (1975) Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes platessa) and the effect of dietary energy source on protein utilization in plaice. Br J Nutr 33:219–231PubMedCrossRefGoogle Scholar
  47. Cowey CB, De la Higuera M, Adron JW (1977a) The effect of dietary composition and of insulin on gluconeogenesis in rainbow trout (Salmo gairdneri). Br J Nutr 38:385–395PubMedCrossRefGoogle Scholar
  48. Cowey CB, Knox D, Walton MJ, Adron JW (1977b) The regulation of gluconeogenesis by diet and insulin in rainbow trout (Salmo gairdneri). Br J Nutr 38:463–470PubMedCrossRefGoogle Scholar
  49. De la Higuera M, Cárdenas P (1986) Hormonal effects of gluconeogenesis from (U–14C) glutamate in rainbow trout (Salmo gairdneri). Comp Biochem Physiol B Biochem Mol Biol 85:517–521Google Scholar
  50. Deane EE, Woo NYS (2005) Expression studies on glucose-6-phosphate dehydrogenase in sea bream: effects of growth hormone, somatostatin, salinity and temperature. J Exp Zool A Comp Exp Biol 303:676–688PubMedGoogle Scholar
  51. DeRoos R, DeRoos CC (1979) Severe insulin-induced hypoglycemia in the spiny dogfish shark (Squalus acanthias). Gen Comp Endocrinol 37:186–191PubMedCrossRefGoogle Scholar
  52. DeRoos R, DeRoos CC, Werner CS, Werner H (1985) Plasma levels of glucose, alanine, lactate, and b-hydroxybutyrate in the unfed spiny dogfish shark (Squalus acanthias) after surgery and following mammalian insulin infusion. Gen Comp Endocrinol 58:28–43PubMedCrossRefGoogle Scholar
  53. Díaz M, Antonescu CN, Capilla E, Klip A, Planas JV (2007a) Fish glucose transporter (GLUT)-4 differs from rat GLUT4 in its traffic characteristics but can translocate to the cell surface in response to insulin in skeletal muscle cells. Endocrinology 148:5248–5257PubMedCrossRefGoogle Scholar
  54. Díaz M, Capilla E, Planas JV (2007b) Physiological regulation of glucose transporter (GLUT4) protein content in brown trout (Salmo trutta) skeletal muscle. J Exp Biol 210:2346–2351PubMedCrossRefGoogle Scholar
  55. Díaz M, Vraskou Y, Gutiérrez J, Planas JV (2009) Expression of rainbow trout glucose transporters GLUT1 and GLUT4 during in vitro muscle cell differentiation and regulation by insulin and IGF-I. Am J Physiol Regul Integr Comp Physiol 296:R794–R800PubMedCrossRefGoogle Scholar
  56. Drai P, Albertini-Berhaut J, Lafaurie M, Sudaka P, Giudicelli J (1990) Simultaneous preparation of basolateral and brush-border membrane vesicles from sea bass intestinal epithelium. Biochim Biophys Acta 1022:251–259PubMedCrossRefGoogle Scholar
  57. Drucker DJ (2005) Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab 1:22–31PubMedCrossRefGoogle Scholar
  58. Dunn JF, Hochachka PW (1986) Metabolic responses of trout (Salmo gairdneri) to acute environmental hypoxia. J Exp Biol 123:229–242Google Scholar
  59. Ehrman MM, Melroe GT, Kittilson D, Sheridan MA (2000) The expression of presomatostatin II mRNAs in the Brockmann bodies of rainbow trout, Oncorhynchus mykiss, is regulated by glucose. Gen Comp Endocrinol 118:150–160PubMedCrossRefGoogle Scholar
  60. Ehrman MM, Melroe GT, Kittilson D, Sheridan MA (2005) Regulation of pancreatic somatostatin gene expression by insulin and glucagon. Mol Cell Endocrinol 235:31–37PubMedCrossRefGoogle Scholar
  61. Eilertson C, Sheridan MA (1993) Differential effects of somatostatin-14 and somatostatin-25 on carbohydrate and lipid metabolism in rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 92:62–70PubMedCrossRefGoogle Scholar
  62. Eilertson CD, Sheridan MA (1995) Pancreatic somatostatin-14 and somatostatin-25 release in rainbow trout is stimulated by glucose and arginine. Am J Physiol Regul Integr Comp Physiol 269:R1017–R1023Google Scholar
  63. Eilertson C, O’Connor PK, Sheridan MA (1991) Somatostatin-14 and somatostatin-25 stimulate glycogenolysis in rainbow trout, Oncorhynchus mykiss, liver incubated in vitro: a systemic role for somatostatins. Gen Comp Endocrinol 82:192–196PubMedCrossRefGoogle Scholar
  64. Eilertson C, Kittilson D, Sheridan MA (1995) Effects of insulin, glucagon, and somatostatin on the release of somatostatin-25 and somatostatin-14 from rainbow trout, Oncorhynchus mykiss, pancreatic islets in vitro. Gen Comp Endocrinol 99:211–220PubMedCrossRefGoogle Scholar
  65. Eilertson CD, Carneiro NM, Kittilson JD, Comley C, Sheridan MA (1996) Cholecystokinin, neuropeptide Y and galanin modulate the release of pancreatic somatostatin-25 and somatostatin-14 in vitro. Regul Pept 63:105–112PubMedGoogle Scholar
  66. Emdin SO (1982) Effects of hagfish insulin in the Atlantic hagfish, Myxine glutinosa. The in vivo metabolism of 14C-glucose and 14C-leucine and studies on starvation and glucose-loading. Gen Comp Endocrinol 47:414–425PubMedCrossRefGoogle Scholar
  67. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol B Biochem Mol Biol 143:89–96Google Scholar
  68. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures. Comp Biochem Physiol A Mol Integr Physiol 149:80–86PubMedCrossRefGoogle Scholar
  69. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539PubMedCrossRefGoogle Scholar
  70. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev Fish Sci 19:201–215CrossRefGoogle Scholar
  71. Epple A (1969) The endocrine pancreas. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 2. Academic Press, New York, pp 275–319Google Scholar
  72. Epple A, Nibbio B, Trachtman MS (1983) Effects of exogenous somatostatin and antisomatostatin on serum parameters of the American eel. Comp Biochem Physiol A Physiol 74:671–675CrossRefGoogle Scholar
  73. Falkmer S, Matty AJ (1966) Blood sugar regulation in the hagfish, Myxine glutinosa. Gen Comp Endocrinol 6:334–346PubMedCrossRefGoogle Scholar
  74. Falkmer S, Wilson S (1967) Comparative aspects of the immunology and biology of insulin. Diabetologia 3:519–528PubMedCrossRefGoogle Scholar
  75. Fänge R, Lundblad G, Lind J, Slettengren K (1979) Chitinolytic enzymes in the digestive system of marine fishes. Mar Biol 53:317–321CrossRefGoogle Scholar
  76. Felip O, Ibarz A, Fernandez-Borras J, Beltran M, Martin-Perez M, Planas JV, Blasco J (2011) Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout (Oncorhynchus mykiss) using stable isotopes ([13C]starch and [15N]protein): effects of gelatinisation of starches and sustained swimming. Br J Nutr 2:1–11Google Scholar
  77. Field JB (1964) Factors concerned with insulin synthesis and release. Metabolism 13:407–421PubMedCrossRefGoogle Scholar
  78. Field JB, Lazarow A (1960) Comparison of the oxidation of C-1 and C-6 labeled glucose by islet tissue. Biol Bull 119:313–314Google Scholar
  79. Figueiredo-Silva AC, Corraze G, Kaushik S, Peleteiro JB, Valente LM (2010) Modulation of blackspot seabream (Pagellus bogaraveo) intermediary metabolic pathways by dispensable amino acids. Amino Acids 39:1401–1416PubMedCrossRefGoogle Scholar
  80. Figueiredo-Silva AC, Panserat S, Kaushik S, Geurden I, Polakof S (2012) High levels of dietary fat impair glucose homeostasis in rainbow trout. J Exp Biol 215:169–178PubMedCrossRefGoogle Scholar
  81. Foster GD, Moon TW (1987) Metabolism in sea raven (Hemitripterus americanus) hepatocytes: the effects of insulin and glucagon. Gen Comp Endocrinol 66:102–115PubMedCrossRefGoogle Scholar
  82. Foster GD, Moon TW (1989) Insulin and the regulation of glycogen metabolism and gluconeogenesis in American eel hepatocytes. Gen Comp Endocrinol 73:374–381PubMedCrossRefGoogle Scholar
  83. Foster GD, Moon TW (1990a) The role of glycogen phosphorylase in the regulation of glycogenolysis by insulin and glucagon in isolated eel (Anguilla rostrata) hepatocytes. Fish Physiol Biochem 8:299–309CrossRefGoogle Scholar
  84. Foster GD, Moon TW (1990b) Control of key carbohydrate-metabolizing enzymes by insulin and glucagon in freshly isolated hepatocytes of the marine teleost Hemitripterus americanus. J Exp Zool 254:55–62CrossRefGoogle Scholar
  85. Foster GD, Youson JH, Moon TW (1993a) Carbohydrate metabolism in the brain of the adult lamprey. J Exp Zool 267:27–32CrossRefGoogle Scholar
  86. Foster GD, Zhang J, Moon TW (1993b) Carbohydrate metabolism and hepatic zonation in the Atlantic hagfish, Myxine glutinosa liver: effects of hormones. Fish Physiol Biochem 12:211–219CrossRefGoogle Scholar
  87. Frolow J, Milligan CL (2004) Hormonal regulation of glycogen metabolism in white muscle slices from rainbow trout (Oncorhynchus mykiss Walbaum). Am J Physiol Regul Integr Comp Physiol 287:R1344–R1353PubMedCrossRefGoogle Scholar
  88. Fuhrman FA, Crismon JM (1947) The influence of acute-hypothermia on the rate of oxygen consumption and glycogen content of the liver and the blood glucose. Am J Physiol 149:552–560PubMedGoogle Scholar
  89. Furuichi M, Yone Y (1981) The utilization of carbohydrate by fishes.3. Change of blood sugar and plasma insulin levels of fishes in glucose tolerance test. Bull Jpn Soc Sci Fish 47:761–764CrossRefGoogle Scholar
  90. Furuichi M, Yone Y (1982a) Changes in activities of hepatic enzymes related to carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance tests. Bull Jpn Soc Sci Fish 48:463–466CrossRefGoogle Scholar
  91. Furuichi M, Yone Y (1982b) Effect of insulin on blood sugar levels of fishes. Bull Jpn Soc Sci Fish 48:1289–1291CrossRefGoogle Scholar
  92. Garin D, Rombaut A, Freminet A (1987) Determination of glucose turnover in sea bass Dicentrarchus labrax. Comparative aspects of glucose utilization. Comp Biochem Physiol B Biochem Mol Biol 87:981–988Google Scholar
  93. Gasa R, Fabregat ME, Gomis R (2000) The role of glucose and its metabolism in the regulation of glucokinase expression in isolated human pancreatic islets. Biochem Biophys Res Commun 268:491–495PubMedCrossRefGoogle Scholar
  94. German DP, Horn MH, Gawlicka A (2004) Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool 77:789–804PubMedCrossRefGoogle Scholar
  95. Geurden I, Aramendi M, Zambonino-Infante J, Panserat S (2007) Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. Am J Physiol Regul Integr Comp Physiol 292:R2275–R2283PubMedCrossRefGoogle Scholar
  96. Gleeson M, Connaughton V, Arneson L (2007) Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol 44:157–163PubMedCrossRefGoogle Scholar
  97. González-Álvarez R, Ortega-Cuellar D, Hernández-Mendoza A, Moreno-Arriola E, Villasenor-Mendoza K, Gálvez-Mariscal A, Pérez-Cruz ME, Morales-Salas I, Velázquez-Arellano A (2009) The hexokinase gene family in the zebrafish: structure, expression, functional and phylogenetic analysis. Comp Biochem Physiol B Biochem Mol Biol 152:189–195PubMedCrossRefGoogle Scholar
  98. Goodyear LJ, Hirshman MF, Knutson SM, Horton ED, Horton ES (1988) Effect of exercise training on glucose homeostasis in normal and insulin-deficient diabetic rats. J Appl Physiol 65:844–851PubMedGoogle Scholar
  99. Gray IE (1928) The effect of insulin on the blood sugar of fishes. Am J Physiol 84:566–573Google Scholar
  100. Gray IE, Hall FG (1930) Blood sugar and activity in fishes with notes on the action of insulin. Biol Bull 58:217–223CrossRefGoogle Scholar
  101. Grodsky GM, Batts AA, Bennett LL, Vcella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644PubMedGoogle Scholar
  102. Gutiérrez J, Navarro I, Planas JV, Montserrat N, Rojas P, Castillo J, Chystiakova OV, Gabillard JC, Smith A, Chan SJ, Leibush BN, Reinecke M, Zaccone G, Kapoor BG (2006) Insulin and IGF receptors in fish. Fish endocrinology. Science Publishers, Enfield, pp 131–165Google Scholar
  103. Hakim Y, Harpaz S, Uni Z (2009) Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following food deprivation. Aquaculture 290:110–115CrossRefGoogle Scholar
  104. Hall JR, Richards RC, MacCormack TJ, Ewart KV, Driedzic WR (2005) Cloning of GLUT3 cDNA from Atlantic cod (Gadus morhua) and expression of GLUT1 and GLUT3 in response to hypoxia. Biochim Biophys Acta 1730:245–252PubMedCrossRefGoogle Scholar
  105. Hall JR, Short CE, Driedzic WR (2006) Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2 and GPDH: developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose. J Exp Biol 209:4490–4502PubMedCrossRefGoogle Scholar
  106. Han-liang C, Yong-xing P, Xue-ping M, Si-ping S, Xiao-yun S, Zhi-guo D, Xin S (2009) Molecular cloning and tissue distribution of glucokinase full-length cDNA from Jian carp (Cyprinus carpio var. Jian). Food Science 30:247–252Google Scholar
  107. Harmon JS, Eilertson CD, Sheridan MA, Plisetskaya EM (1991) Insulin suppression is associated with hypersomatostatinemia and hyperglucagonemia in glucose-injected rainbow trout. Am J Physiol Regul Integr Comp Physiol 261:R609–R613Google Scholar
  108. Hayashi S, Ooshiro Z (1985) Gluconeogenesis and energy metabolism in the isolated liver cells of the silver and yellow eel. Bull Jpn Soc Sci Fish 51:117–120CrossRefGoogle Scholar
  109. Hemre GI, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194CrossRefGoogle Scholar
  110. Himick BA, Peter RE (1994) CCK/gastrin-like immunoreactivity in brain and gut, and CCK suppression of feeding in goldfish. Am J Physiol Regul Integr Comp Physiol 267:R841–R851Google Scholar
  111. Hoenig M, Jordan ET, Ferguson DC, de Vries F (2010) Oral glucose leads to a differential response in glucose, insulin, and GLP-1 in lean versus obese cats. Domest Anim Endocrinol 38:95–102PubMedCrossRefGoogle Scholar
  112. Hoffman RM, Kronfeld DS, Cooper WL, Harris PA (2003) Glucose clearance in grazing mares is affected by diet, pregnancy, and lactation. J Anim Sci 81:1764–1771PubMedGoogle Scholar
  113. Holloway AC, Keene JL, Noakes DG, Moccia RD (2004) Effects of clove oil and MS-222 on blood hormone profiles in rainbow trout Oncorhynchus mykiss, Walbaum. Aquac Res 35:1025–1030CrossRefGoogle Scholar
  114. Hostetler K, Cooperstein SJ, Landau BR, Lazarow A (1966) Pathways of glucose metabolism in the isolated islet of the goosefish in vitro. Am J Physiol 211:1057–1062PubMedGoogle Scholar
  115. Hrytsenko O, Pohajdak B, Xu BY, Morrison C, van Tol B, Wright JR Jr (2010) Cloning and molecular characterization of the glucose transporter 1 in tilapia (Oreochromis niloticus). Gen Comp Endocrinol 165:293–303PubMedCrossRefGoogle Scholar
  116. Humbel RE, Renold AE, Williams AK (1963) Studies on isolated islets of Langerhans (Brockmann bodies) of teleost fishes I. Metabolic activity in vitro. Biochim Biophys Acta 74:84–95PubMedCrossRefGoogle Scholar
  117. Hung SSO (1991) Carbohydrate utilization by white sturgeon as assessed by oral administration tests. J Nutr 121:1600–1605PubMedGoogle Scholar
  118. Ince BW, Thorpe A (1974) Effects of insulin and of metabolite loading on blood metabolites in the European silver eel (Anguilla anguilla L.). Gen Comp Endocrinol 23:460–471PubMedCrossRefGoogle Scholar
  119. Ince BW, Thorpe A (1976) The in vivo metabolism of 14C-glucose and 14C-glycine in insulin-treated northern pike (Esox lucius L.). Gen Comp Endocrinol 28:481–486PubMedCrossRefGoogle Scholar
  120. Ince BW, Thorpe A (1978) Insulin kinetics and distribution in rainbow trout (Salmo gairdneri). Gen Comp Endocrinol 35:1–9PubMedCrossRefGoogle Scholar
  121. Inui Y, Gorbman A (1977) Sensitivity of Pacific hagfish, Eptatretus stouti, to mammalian insulin. Gen Comp Endocrinol 33:423–427PubMedCrossRefGoogle Scholar
  122. Iynedjian PB (2009) Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 66:27–42PubMedCrossRefGoogle Scholar
  123. Jensen PJ, Gitlin JD, Carayannopoulos MO (2006) GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem 281:13382–13387PubMedCrossRefGoogle Scholar
  124. Jeuniaux C, Dandrifosse G, Micha JC (1982) Caractères et évolution des enzymes chitinolytiques chez les vertébrés infèrieurs. Biochem Syst Ecol 10:365–372CrossRefGoogle Scholar
  125. Johansson D, Nilsson G (1995) Roles of energy status, KATP channels and channel arrest in fish brain K+ gradient dissipation during anoxia. J Exp Biol 198:2575–2580PubMedGoogle Scholar
  126. Jonsson E, Kaiya H, Bjornsson BT (2010) Ghrelin decreases food intake in juvenile rainbow trout (Oncorhynchus mykiss) through the central anorexigenic corticotropin-releasing factor system. Gen Comp Endocrinol 166:39–46PubMedCrossRefGoogle Scholar
  127. Joy P (2002) Cloning, sequencing and expression of the tilapia glucokinase. Department of Biology, Dalhousie University, HalifaxGoogle Scholar
  128. Kao YH, Youson JH, Holmes JA, Sheridan MA (2001) Effect of somatostatins and insulin on blood glucose levels of larvae and metamorphosing landlocked sea lamprey, Petromyzon marinus. Zool Sci 18:1113–1116CrossRefGoogle Scholar
  129. Katon JG, Flores YN, Salmeron J (2009) Sexual maturation and metabolic profile among adolescents and children of the Health Worker Cohort Study in Mexico. Salud Publica Mex 51:219–226PubMedCrossRefGoogle Scholar
  130. Kettelhut IC, Foss MC, Migliorini RH (1980) Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Physiol Regul Integr Comp Physiol 239:R437–R444Google Scholar
  131. Kirchner S, Kaushik S, Panserat S (2003a) Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 134:337–347PubMedCrossRefGoogle Scholar
  132. Kirchner S, Kaushik S, Panserat S (2003b) Low protein intake is associated with reduced hepatic gluconeogenic enzyme expression in rainbow trout (Oncorhynchus mykiss). J Nutr 133:2561–2564PubMedGoogle Scholar
  133. Kirchner S, Seixas P, Kaushik S, Panserat S (2005) Effects of low protein intake on extra-hepatic gluconeogenic enzyme expression and peripheral glucose phosphorylation in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 140:333–340PubMedCrossRefGoogle Scholar
  134. Kirchner S, Panserat S, Lim PL, Kaushik S, Ferraris RP (2008) The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. J Comp Physiol B Biochem Syst Environ Physiol 178:429–438CrossRefGoogle Scholar
  135. Klein SE, Sheridan MA (2008) Somatostatin signaling and the regulation of growth and metabolism in fish. Mol Cell Endocrinol 286:148–154PubMedCrossRefGoogle Scholar
  136. Klover PJ, Mooney RA (2004) Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 36:753–758PubMedCrossRefGoogle Scholar
  137. Krasnov A, Teerijoki H, Mölsä H (2001) Rainbow trout (Oncorhynchus mykiss) hepatic glucose transporter. Biochim Biophys Acta 1520:174–178PubMedCrossRefGoogle Scholar
  138. Kreymann B, Ghatei MA, Williams G, Bloom SR (1987) Glucagon-like peptide 7–36: a physiological incretin in man. Lancet 330:1300–1304CrossRefGoogle Scholar
  139. Krogdahl Å, Bakke-Mckellep AM (2005) Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 141:450–460PubMedCrossRefGoogle Scholar
  140. Krogdahl Å, Nordrum S, Sørensen M, Brudeseth L, Rosjo C (1999) Effects of diet composition on apparent nutrient absorption along the intestinal tract and subsequent fasting on mucosal disaccharidase activities and plasma nutrient concentration in Atlantic salmon. Aquac Nutr 5:121–133CrossRefGoogle Scholar
  141. Krogdahl Å, Sundby A, Olli JJ (2004) Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229:335–360CrossRefGoogle Scholar
  142. Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11:103–122CrossRefGoogle Scholar
  143. Kumar S, Sahu NP, Pal AK, Sagar V, Sinha AK, Baruah K (2009) Modulation of key metabolic enzyme of Labeo rohita (Hamilton) juvenile: effect of dietary starch type, protein level and exogenous α-amylase in the diet. Fish Physiol Biochem 35:301–315PubMedCrossRefGoogle Scholar
  144. Kuz’mina VV (1996) Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture 148:25–37CrossRefGoogle Scholar
  145. Lanctin HP, McMorran LE, Driedzic WR (1980) Rates of glucose and lactate oxidation by the perfused isolated trout (Salvelinus fontinalis) heart. Can J Zool 58:1708–1711PubMedCrossRefGoogle Scholar
  146. Lansard M, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids 39:801–810PubMedCrossRefGoogle Scholar
  147. Lansard M, Panserat S, Plagnes-Juan E, Dias K, Seiliez I, Skiba-Cassy S (2011) l-Leucine, l-methionine, and l-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141:75–80PubMedCrossRefGoogle Scholar
  148. Lazo JP, Holt GJ, Arnold CR (2000) Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquac Nutr 6:183–192CrossRefGoogle Scholar
  149. Legate N, Bonen A, Moon TW (2001) Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas). Gen Comp Endocrinol 122:48–59PubMedCrossRefGoogle Scholar
  150. Leibson LG (1973) Features of the metabolism and its endocrine regulation in fish with different motor activities. Evol Physiol Biochem 8:248–253Google Scholar
  151. Leibson L, Plisetskaya EM (1968) Effect of insulin on blood sugar level and glycogen content in organs of some cyclostomes and fish. Gen Comp Endocrinol 11:381–392PubMedCrossRefGoogle Scholar
  152. Lenzen S, Lerch M, Peckman T, Tiedge M (2000) Differential regulation of [Ca2+]i oscillations in mouse pancreatic islets by glucose, α-ketoisocaproic acid, glyceraldehyde and glycolytic intermediates. Biochim Biophys Acta 1523:65–72PubMedCrossRefGoogle Scholar
  153. Levin BE, Routh VH, Kang L, Sanders NM, Dunn-Meynell AA (2004) Neuronal glucosensing. What do we know after 50 years? Diabetes 53:2521–2528PubMedCrossRefGoogle Scholar
  154. Levin BE, Magnan C, Dunn-Meynell A, Le Foll C (2011) Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152:2552–2557PubMedCrossRefGoogle Scholar
  155. Levine VE, Kolars JJ (1925) The effect of insulin on the morphological blood picture, with a note on the relation of diet to the convulsions induced by insulin. Am J Physiol 74:695–707Google Scholar
  156. Lewander K, Dave G, Johansson-Sjöbeck M-L, Larsson Å, Lidman U (1976) Metabolic effects of insulin in the European eel, Anguilla anguilla L. Gen Comp Endocrinol 29:455–467PubMedCrossRefGoogle Scholar
  157. Li GG, Liang XF, Xie Q, Li G, Yu Y, Lai K (2010) Gene structure, recombinant expression and functional characterization of grass carp leptin. Gen Comp Endocrinol 166:117–127PubMedCrossRefGoogle Scholar
  158. Lin H, Romsos DR, Tack PI, Leveille GA (1978) Determination of glucose utilization in coho salmon [Oncorhynchus kisutch (Walbaum)] with (6-3H)- and (U–14C)-glucose. Comp Biochem Physiol A Physiol 59:189–191CrossRefGoogle Scholar
  159. Lin SC, Liou CH, Shiau SY (2000) Renal threshold for urinary glucose excretion by tilapia in response to orally administered carbohydrates and injected glucose. Fish Physiol Biochem 23:127–132CrossRefGoogle Scholar
  160. López-Vásquez K, Castro-Pérez CA, Val AL (2009) Digestive enzymes of eight Amazonian teleosts with different feeding habits. J Fish Biol 74:1620–1628PubMedCrossRefGoogle Scholar
  161. Loxham SJG, Teague J, Poucher SM, De Schoolmeester J, Turnbull AV, Carey F (2006) Glucagon challenge in the rat: a robust method for the in vivo assessment of glycogen phosphorylase inhibitor efficacy. J Pharmacol Toxicol Methods 55:71–77PubMedCrossRefGoogle Scholar
  162. Lynch RM, Tompkins LS, Brooks HL, Dunn-Meynell AA, Levin BE (2000) Localization of glucokinase gene expression in the rat brain. Diabetes 49:693–700PubMedCrossRefGoogle Scholar
  163. MacDonald PE, Eliasson L, Rorsman P (2005) Calcium increases endocytotic vesicle size and accelerates membrane fission in insulin-secreting INS-1 cells. J Cell Sci 118:5911–5920PubMedCrossRefGoogle Scholar
  164. Machado CR, Garofalo MAR, Roselino JES, Kettelhut IC, Migliorini RH (1988) Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet. Gen Comp Endocrinol 71:429–437PubMedCrossRefGoogle Scholar
  165. Magnoni LJ, Míguez JM, Soengas JL (2001) Glucagon effects on brain carbohydrate and ketone body metabolism of rainbow trout. J Exp Zool A Comp Exp Biol 290:662–671CrossRefGoogle Scholar
  166. Martin LJ, Siliart B, Lutz TA, Biourge V, Nguyen P, Dumon HJ (2010) Postprandial response of plasma insulin, amylin and acylated ghrelin to various test meals in lean and obese cats. Br J Nutr 103:1610–1619PubMedCrossRefGoogle Scholar
  167. Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiology 22:241–251PubMedCrossRefGoogle Scholar
  168. Mazepa RC, Cuevas MJ, Collado PS, González-Gallego J (1999) Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci 66:153–160CrossRefGoogle Scholar
  169. Mazur CN, Higgs DA, Plisetskaya EM, March BE (1992) Utilization of dietary starch and glucose tolerance in juvenile Chinook salmon (Oncorhynchus tshawytscha) of different strains in seawater. Fish Physiol Biochem 10:303–313CrossRefGoogle Scholar
  170. Melroe GT, Ehrman MM, Kittilson JD, Sheridan MA (2000) Glucose regulates pancreatic preprosomatostatin I expression. FEBS Lett 465:115–118PubMedCrossRefGoogle Scholar
  171. Mithieux G (2009) A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis. Nutrition 25:881–884PubMedCrossRefGoogle Scholar
  172. Miura T, Maruyama K, Shimakura S, Kaiya H, Uchiyama M, Kangawa K, Shioda S, Matsuda K (2006) Neuropeptide Y mediates ghrelin-induced feeding in the goldfish, Carassius auratus. Neurosci Lett 407:279–283PubMedCrossRefGoogle Scholar
  173. Mommsen TP (2000) Glucagon-like peptide-1 in fishes: the liver and beyond. Am Zool 40:259–268CrossRefGoogle Scholar
  174. Mommsen TP, Plisetskaya EM (1991) Insulin in fishes and agnathans: history, structure, and metabolic regulation. Rev Aquat Sci 4:225–259Google Scholar
  175. Mommsen TP, Moon TW, Plisetskaya EM (2001) Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool 74:668–678PubMedCrossRefGoogle Scholar
  176. Mommsen TP, Busby ER, Reinecke M, Zaccone G, Kapoor BG (2006) Glucagon and friends. Fish endocrinology. Science Publishers, Enfield, pp 223–256Google Scholar
  177. Moon TW (1998) Glucagon: from hepatic binding to metabolism in teleost fish. Comp Biochem Physiol B Biochem Mol Biol 121:27–34CrossRefGoogle Scholar
  178. Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol B Biochem Mol Biol 129:243–249PubMedCrossRefGoogle Scholar
  179. Moon TW, Foster GD, Plisetskaya EM (1989) Changes in peptide hormones and liver enzymes in the rainbow trout deprived of food for 6 weeks. Can J Zool 67:2189–2193CrossRefGoogle Scholar
  180. Moon TW, Gambarotta A, Capuzzo A, Fabbri E (1997) Glucagon and glucagon-like peptide signaling pathways in the liver of two fish species, the American eel and the black bullhead. J Exp Zool A Comp Exp Biol 279:62–70CrossRefGoogle Scholar
  181. Moritz W, Leech CA, Ferrer J, Habener JF (2001) Regulated expression of adenosine triphosphate-sensitive potassium channel subunits in pancreatic beta-cells. Endocrinology 142:129–138PubMedCrossRefGoogle Scholar
  182. Munilla-Morán R, Saborido-Rey F (1996) Digestive enzymes in marine species. II. Amylase activities in gut from seabream (Sparus aurata), turbot (Scophthalmus maximus) and redfish (Sebastes mentella). Comp Biochem Physiol B Biochem Mol Biol 113:827–834CrossRefGoogle Scholar
  183. Murashita K, Uji S, Yamamoto T, Ronnestad I, Kurokawa T (2008) Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 150:377–384PubMedCrossRefGoogle Scholar
  184. Musson MC, Jepeal LI, Mabray PD, Zhdanova IV, Cardoso WV, Wolfe MM (2009) Expression of glucose-dependent insulinotropic polypeptide in the zebrafish. Am J Physiol Regul Integr Comp Physiol 297:R1803–R1812PubMedCrossRefGoogle Scholar
  185. Narnaware YK, Peter RE (2002) Influence of diet composition on food intake and neuropeptide Y (NPY) gene expression in goldfish brain. Regul Pept 103:75–83PubMedCrossRefGoogle Scholar
  186. Natalia Y, Hashim R, Ali A, Chong A (2004) Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233:305–320CrossRefGoogle Scholar
  187. Navarro I, Epple A (1993) Plasma catecholamines do not respond to insulin-induced hypoglycemia in a teleost, Anguilla rostrata. Am J Physiol Endocrinol Metab 265:E20–E23Google Scholar
  188. Navarro I, Moon TW (1994) Glucagon binding to hepatocytes isolated from two teleost fishes, the American eel and the brown bullhead. J Endocrinol 140:217–227PubMedCrossRefGoogle Scholar
  189. Navarro I, Leibush B, Moon TW, Plisetskaya EM, Baños N, Méndez E, Planas JV, Gutiérrez J (1999) Insulin, insulin-like growth factor-I (IGF-I) and glucagon: the evolution of their receptors. Comp Biochem Physiol B Biochem Mol Biol 122:137–153PubMedCrossRefGoogle Scholar
  190. Navarro I, Capilla E, Castillo A, Albalat A, Díaz M, Gallardo MA, Blasco J, Planas JV, Gutiérrez J, Reinecke M, Zaccone G, Kapoor BG (2006) Insulin metabolic effects in fish tissues. Fish endocrinology. Science Publishers, Enfield, pp 15–48Google Scholar
  191. Nelson LE, Sheridan MA (2006) Gastroenteropancreatic hormones and metabolism in fish. Gen Comp Endocrinol 148:116–124PubMedCrossRefGoogle Scholar
  192. Nikinmaa M, Tiihonen K (1994) Substrate transport and utilization in fish erythrocytes. Acta Physiol Scand 152:183–189PubMedCrossRefGoogle Scholar
  193. Nilsson GE, Perez-Pinzon M, Dimberg K, Winberg S (1993) Brain sensitivity to anoxia in fish as reflected by changes in extracellular K+ activity. Am J Physiol Regul Integr Comp Physiol 264:R250–R253Google Scholar
  194. Novoa MS, Capilla E, Rojas P, Baró J, Gutiérrez J, Navarro I (2004) Glucagon and insulin response to dietary carbohydrate in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 139:48–54CrossRefGoogle Scholar
  195. NRC TNRC (2011) Nutrient requirements of fish and shrimp. National Academy Press, Washington, DCGoogle Scholar
  196. Ottolenghi C, Puviani AC, Baruffaldi A, Brighenti L (1981) Effect of insulin on carbohydrate metabolism in the catfish (Ictalurus melas) II. In vitro experiments. Boll Soc Ital Biol Sper 57:777–783PubMedGoogle Scholar
  197. Ottolenghi C, Puviani AC, Baruffaldi A (1982) In vivo effects of insulin on carbohydrate metabolism of catfish (Ictalurus melas). Comp Biochem Physiol A Physiol 72:35–41CrossRefGoogle Scholar
  198. Ottolenghi C, Puviani AC, Baruffaldi A, Brighenti L (1984) Effect of insulin on glycogen metabolism in isolated catfish hepatocytes. Comp Biochem Physiol A Physiol 78:705–710CrossRefGoogle Scholar
  199. Ottolenghi C, Puviani AC, Gavioli ME, Brighenti L (1985) Effects of insulin on glycogen metabolism in isolated and perfused catfish liver. Comp Biochem Physiol A Physiol 80:135–138CrossRefGoogle Scholar
  200. Palmer TN, Ryman BE (1972) Studies on oral glucose intolerance in fish. J Fish Biol 4:311–319CrossRefGoogle Scholar
  201. Panserat S (2009) Nutritional regulation of gene expression for proteins involved in metabolism in cultured fish: focus on dietary carbohydrates. In: Young G, Thorgaard GH, Gatlin DM II, Craig S (eds) Current status of molecular research in Aquaculture. Wiley-Blackwell, NYGoogle Scholar
  202. Panserat S, Blin C, Médale F (2000a) Molecular cloning tissue distribution and sequence analysis of complete glucokinase cDNAs from gilthead seabream (Sparus aurata), rainbow trout and common carp. Biochim Biophys Acta 1474:61–69PubMedCrossRefGoogle Scholar
  203. Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000b) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278:R1164–R1170PubMedGoogle Scholar
  204. Panserat S, Médale F, Brèque J, Plagnes-Juan E, Kaushik S (2000c) Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr Biochem 11:22–29PubMedCrossRefGoogle Scholar
  205. Panserat S, Capilla E, Gutiérrez J, Frappart PO, Vachot C, Plagnes-Juan E, Aguirre P, Brèque J, Kaushik S (2001a) Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp Biochem Physiol B Biochem Mol Biol 128:275–283PubMedCrossRefGoogle Scholar
  206. Panserat S, Plagnes-Juan E, Kaushik S (2001b) Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204:2351–2360PubMedGoogle Scholar
  207. Panserat S, Perrin A, Kaushik S (2002a) High dietary lipids induce liver glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr 132:137–141PubMedGoogle Scholar
  208. Panserat S, Plagnes-Juan E, Kaushik S (2002b) Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Biochim Biophys Acta 1579:35–42PubMedCrossRefGoogle Scholar
  209. Panserat S, Skiba-Cassy S, Seiliez I, Lansard M, Plagnes-Juan E, Vachot C, Aguirre P, Larroquet L, Chavergnac G, Médale F, Corraze G, Kaushik S, Moon TW (2009) Metformin improves postprandial glucose homeostasis in rainbow trout fed dietary carbohydrates: a link with the induction of hepatic lipogenic capacities? Am J Physiol Regul Integr Comp Physiol 293:R707–R715CrossRefGoogle Scholar
  210. Párrizas M, Planas J, Plisetskaya EM, Gutiérrez J (1994) Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish. Am J Physiol Regul Integr Comp Physiol 266:R1944–R1950Google Scholar
  211. Párrizas M, Plisetskaya EM, Planas J, Gutiérrez J (1995) Abundant insulin-like growth factor-1 (IGF-1) receptor binding in fish skeletal muscle. Gen Comp Endocrinol 98:16–25PubMedCrossRefGoogle Scholar
  212. Patent GJ (1973) The chondrichthyean endocrine pancreas: what are its functions? Am Zool 13:639–651Google Scholar
  213. Penicaud L, Kande J, Le Magnen J, Girard JR (1985) Insulin action during fasting and refeeding in rat determined by euglycemic clamp. Am J Physiol 249:E514–E518PubMedGoogle Scholar
  214. Pereira C, Vijayan MM, Storey KB, Jones RA, Moon TW (1995) Role of glucose and insulin in regulating glycogen synthase and phosphorylase activities in rainbow trout hepatocytes. J Comp Physiol B Biochem Syst Environ Physiol 165:62–70CrossRefGoogle Scholar
  215. Peres H, Gonçalves P, Oliva-Teles A (1999) Glucose tolerance in gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Aquaculture 179:415–423CrossRefGoogle Scholar
  216. Perez J, Gutierrez J, Carrillo M, Zanuy S, Fernandez J (1989) Effect of bonito insulin injection on plasma immunoreactive glucagon levels and carbohydrate and lipid metabolism of sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Physiol 94:33–36CrossRefGoogle Scholar
  217. Petersen TDP, Hochachka PW, Suárez RK (1987) Hormonal control of gluconeogenesis in rainbow trout hepatocytes: regulatory role of pyruvate kinase. J Exp Zool 243:173–180CrossRefGoogle Scholar
  218. Picha ME, Strom CN, Riley LG, Walker AA, Won ET, Johnstone WM, Borski RJ (2009) Plasma ghrelin and growth hormone regulation in response to metabolic state in hybrid striped bass: effects of feeding, ghrelin and insulin-like growth factor-I on in vivo and in vitro GH secretion. Gen Comp Endocrinol 161:365–372PubMedCrossRefGoogle Scholar
  219. Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909PubMedCrossRefGoogle Scholar
  220. Plagnes-Juan E, Lansard M, Seiliez I, Medale F, Corraze G, Kaushik S, Panserat S, Skiba-Cassy S (2008) Insulin regulates the expression of several metabolism-related genes in the liver and primary hepatocytes of rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2510–2518PubMedCrossRefGoogle Scholar
  221. Plisetskaya EM (1980) Fatty-acid levels in blood of cyclostomes and fish. Env Biol Fish 5:273–290CrossRefGoogle Scholar
  222. Plisetskaya EM (1989) Physiology of fish endocrine pancreas. Fish Physiol Biochem 7:39–48CrossRefGoogle Scholar
  223. Plisetskaya EM, Duan C (1994) Insulin and insulin-like growth factor I in coho salmon Oncorhynchus kisutch injected with streptozotocin. Am J Physiol Regul Integr Comp Physiol 267:R1408–R1412Google Scholar
  224. Plisetskaya EM, Mommsen TP (1996) Glucagon and glucagon-like peptides in fishes. Int Rev Cytol 168:187–257PubMedCrossRefGoogle Scholar
  225. Plisetskaya EM, Bhattacharya S, Dickhoff WW, Gorbman A (1984) The effect of insulin on amino acid metabolism and glycogen content in isolated liver cells of juvenile coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A Physiol 78:773–778CrossRefGoogle Scholar
  226. Plisetskaya EM, Pollock HG, Rouse JB, Hamilton JW, Kimmel JR, Andrews PC, Gorbman A (1986) Characterization of coho salmon (Oncorhynchus kisutch) islet somatostatins. Gen Comp Endocrinol 63:252–263PubMedCrossRefGoogle Scholar
  227. Plisetskaya EM, Ottolenghi C, Sheridan MA, Mommsen TP, Gorbman A (1989a) Metabolic effects of salmon glucagon and glucagon-like peptide in coho and chinook salmon. Gen Comp Endocrinol 73:205–216PubMedCrossRefGoogle Scholar
  228. Plisetskaya EM, Sheridan MA, Mommsen TP (1989b) Metabolic changes in Coho and Chinook salmon resulting from acute insufficiency in pancreatic hormones. J Exp Zool 249:158–164PubMedCrossRefGoogle Scholar
  229. Plisetskaya EM, Buchelli-Narvaez LI, Hardy RW, Dickhoff WW (1991) Effects of injected and dietary arginine on plasma insulin levels and growth of pacific salmon and rainbow trout. Comp Biochem Physiol A Physiol 98:165–170CrossRefGoogle Scholar
  230. Polakof S (2011) Brain glucosensing: physiological implications. Nova Science Pub Inc, NYGoogle Scholar
  231. Polakof S, Soengas JL (2008) Involvement of lactate in glucose metabolism and glucosensing function in selected tissues of rainbow trout. J Exp Biol 211:1075–1086PubMedCrossRefGoogle Scholar
  232. Polakof S, Míguez JM, Moon TW, Soengas JL (2007a) Evidence for the presence of a glucosensor in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 292:R1657–R1666PubMedCrossRefGoogle Scholar
  233. Polakof S, Míguez JM, Soengas JL (2007b) In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 293:R1410–R1420PubMedCrossRefGoogle Scholar
  234. Polakof S, Míguez JM, Soengas JL (2008a) Changes in food intake and glucosensing function of hypothalamus and hindbrain in rainbow trout subjected to hyperglycemic or hypoglycemic conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:829–839PubMedCrossRefGoogle Scholar
  235. Polakof S, Míguez JM, Soengas JL (2008b) Dietary carbohydrates induce changes in glucosensing capacity and food intake of rainbow trout. Am J Physiol Regul Integr Comp Physiol 295:R478–R489PubMedCrossRefGoogle Scholar
  236. Polakof S, Panserat S, Plagnes-Juan E, Soengas JL (2008c) Altered dietary carbohydrates significantly affect gene expression of the major glucosensing components in Brockmann bodies and hypothalamus of rainbow trout. Am J Physiol Regul Integr Comp Physiol 295:R1077–R1088PubMedCrossRefGoogle Scholar
  237. Polakof S, Rodriguez-Alonso M, Soengas JL (2009a) Immunohistochemical localization of glucokinase in rainbow trout brain. Comp Biochem Physiol A Mol Integr Physiol 153:352–358PubMedCrossRefGoogle Scholar
  238. Polakof S, Skiba-Cassy S, Panserat S (2009b) Glucose homeostasis is impaired by a paradoxical interaction between metformin and insulin in carnivorous rainbow trout. Am J Physiol Regul Integr Comp Physiol 297:R1769–R1776PubMedCrossRefGoogle Scholar
  239. Polakof S, Alvarez R, Soengas JL (2010a) Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol Regul Integr Comp Physiol 299:R19–R32PubMedCrossRefGoogle Scholar
  240. Polakof S, Moon TW, Aguirre P, Skiba-Cassy S, Panserat S (2010b) Effects of insulin infusion on glucose homeostasis and glucose metabolic gene expression in rainbow trout fed a high-carbohydrate diet. J Exp Biol 213:4151–4157PubMedCrossRefGoogle Scholar
  241. Polakof S, Skiba-Cassy S, Choubert G, Panserat S (2010c) Insulin-induced hypoglycaemia is co-ordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 213:1443–1452PubMedCrossRefGoogle Scholar
  242. Polakof S, Medale F, Larroquet L, Vachot C, Corraze G, Panserat S (2011a) Insulin stimulates lipogenesis and attenuates β-oxidation in white adipose tissue of fed rainbow trout. Lipids 46:189–199PubMedCrossRefGoogle Scholar
  243. Polakof S, Medale F, Larroquet L, Vachot C, Corraze G, Panserat S (2011b) Regulation of de novo hepatic lipogenesis by insulin infusion in rainbow trout fed a high-carbohydrate diet. J Anim Sci 89:3079–3088PubMedCrossRefGoogle Scholar
  244. Polakof S, Miguez JM, Soengas JL (2011c) Cholecystokinin impact on rainbow trout glucose homeostasis: possible involvement of central glucosensors. Regul Pept 172:23–29PubMedCrossRefGoogle Scholar
  245. Polakof S, Miguez JM, Soengas JL (2011d) Evidence for a gut-brain axis used by glucagon-like peptide-1 to elicit hyperglycaemia in fish. J Neuroendocrinol 23:508–518PubMedCrossRefGoogle Scholar
  246. Polakof S, Míguez JM, Soengas JL (2011e) Ghrelin effects on central glucosensing and energy homeostasis-related peptides in rainbow trout. Domest Anim Endocrinol 41:126–136PubMedCrossRefGoogle Scholar
  247. Polakof S, Mommsen TP, Soengas JL (2011f) Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol A Mol Integr Physiol 160:123–149Google Scholar
  248. Polakof S, Moon TW, Aguirre P, Skiba-Cassy S, Panserat S (2011g) Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner. Am J Physiol Regul Integr Comp Physiol 300:R166–R174PubMedCrossRefGoogle Scholar
  249. Polakof S, Panserat S, Craig PM, Martyres DJ, Plagnes-Juan E, Savari S, Aris-Brosou S, Moon TW (2011h) The metabolic consequences of hepatic AMP-kinase phosphorylation in rainbow trout. PLoS ONE 6:e20228PubMedCrossRefGoogle Scholar
  250. Polakof S, Skiba-Cassy S, Kaushik S, Seiliez I, Soengas JL, Panserat S (2012) Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake. J Comp Physiol B. doi:10.1007/s00360-011-0636-5 Google Scholar
  251. Reshkin SJ, Ahearn GA (1987) Basolateral glucose transport by intestine of teleost, Oreochromis mossambicus. Am J Physiol Regul Integr Comp Physiol 252:R579–R586Google Scholar
  252. Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473CrossRefGoogle Scholar
  253. Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 96:299–309PubMedCrossRefGoogle Scholar
  254. Riley LG Jr, Walker AP, Dorough CP, Schwandt SE, Grau EG (2009) Glucose regulates ghrelin, neuropeptide Y, and the GH/IGF-I axis in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol 154:541–546PubMedCrossRefGoogle Scholar
  255. Ronner P (1991) 2-Deoxyglucose stimulates the release of insulin and somatostatin from the perfused catfish pancreas. Gen Comp Endocrinol 81:276–283PubMedCrossRefGoogle Scholar
  256. Ronner P, Scarpa A (1987) Secretagogues for pancreatic hormone release in the channel catfish. Gen Comp Endocrinol 65:354–362PubMedCrossRefGoogle Scholar
  257. Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC (2001) Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell 1:265–275PubMedCrossRefGoogle Scholar
  258. Sabapathy U, Teo LH (1993) A quantitative study of some digestive enzymes in the rabbitfish, Siganus canaliculatus and the sea bass, Lates calcarifer. J Fish Biol 42:595–602CrossRefGoogle Scholar
  259. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA (2005) Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med (Maywood) 230:777–784Google Scholar
  260. Salgado MC, Metón I, Egea M, Baanante IV (2004) Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata. J Mol Endocrinol 33:783–795PubMedCrossRefGoogle Scholar
  261. Sánchez-Gurmaches J, Cruz-García L, Gutierrez J, Navarro I (2010) Endocrine control of oleic acid and glucose metabolism in rainbow trout (Oncorhynchus mykiss) muscle cells in culture. Am J Physiol Regul Integr Comp Physiol 299:R562–R572PubMedCrossRefGoogle Scholar
  262. Sánchez-Gurmaches J, Østbye T-K, Navarro I, Torgersen J, Hevrøy EM, Ruyter B, Torstensen BE (2011) In vivo and in vitro insulin and fasting control of the transmembrane fatty acid transport proteins in Atlantic salmon (Salmo salar). Am J Physiol Regul Integr Comp Physiol 301:R947–R957PubMedCrossRefGoogle Scholar
  263. Sangiao-Alvarellos S, Míguez JM, Soengas JL (2005) Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 141:214–225PubMedCrossRefGoogle Scholar
  264. Sangiao-Alvarellos S, Míguez JM, Soengas JL (2007) Melatonin treatment affects the osmoregulatory capacity of rainbow trout. Aquac Res 38:325–330CrossRefGoogle Scholar
  265. Santigosa E, García-Meilán I, Valentin JM, Pérez-Sánchez J, Médale F, Kaushik S, Gallardo MA (2011) Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss). Aquaculture 317:146–154CrossRefGoogle Scholar
  266. Seals DR, Hagberg JM, Allen WK, Hurley BF, Dalsky GP, Ehsani AA, Holloszy JO (1984) Glucose tolerance in young and older athletes and sedentary men. J Appl Physiol 56:1521–1525PubMedGoogle Scholar
  267. Segner H, Blair JB, Wirtz G, Miller MR (1994) Cultured trout liver cells: utilization of substrates and response to hormones. In Vitro Cell Dev Biol Anim 30A:306–311PubMedCrossRefGoogle Scholar
  268. Seiliez I, Gabillard JC, Skiba-Cassy S, García-Serrana D, Gutiérrez J, Kaushik S, Panserat S, Tesseraud S (2008) An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 295:R329–R335PubMedCrossRefGoogle Scholar
  269. Seiliez I, Panserat S, Skiba-Cassy S, Polakof S (2011) Effect of acute and chronic insulin administrations on major factors involved in the control of muscle protein turnover in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 172:363–370PubMedCrossRefGoogle Scholar
  270. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322PubMedCrossRefGoogle Scholar
  271. Sheridan MA, Kittilson JD (2004) The role of somatostatins in the regulation of metabolism in fish. Comp Biochem Physiol B Biochem Mol Biol 138:323–330PubMedCrossRefGoogle Scholar
  272. Sheridan MA, Plisetskaya EM, Bern HA, Gorbman A (1987) Effects of somatostatin-25 and urotensin II on lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 66:405–414PubMedCrossRefGoogle Scholar
  273. Sheridan MA, Kittilson D, Slagter BJ (2000) Structure–function relationships of the signaling system for the somatostatin peptide hormone family. Am Zool 40:269–286CrossRefGoogle Scholar
  274. Shiau SY, Liang HS (1995) Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus × O. aureus, are affected by chromic oxide inclusion in the diet. J Nutr 125:976–982PubMedGoogle Scholar
  275. Sidi S, Busch-Nentwich E, Friedrich R, Schoenberger U, Nicolson T (2004) Gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J Neurosci 24:4213–4223PubMedCrossRefGoogle Scholar
  276. Silverstein JT, Plisetskaya EM (2000) The effects of NPY and insulin on food intake regulation in fish. Am Zool 40:296–308CrossRefGoogle Scholar
  277. Silverstein JT, Bondareva VM, Leonard JB, Plisetskaya EM (2001) Neuropeptide regulation of feeding in catfish, Ictalurus punctatus: a role for glucagon-like peptide-1 (GLP-1)? Comp Biochem Physiol B Biochem Mol Biol 129:623–631PubMedCrossRefGoogle Scholar
  278. Sivarajah P, Wheeler MB, Irwin DM (2001) Evolution of receptors for proglucagon-derived peptides: isolation of frog glucagon receptors. Comp Biochem Physiol B Biochem Mol Biol 128:517–527PubMedCrossRefGoogle Scholar
  279. Skea GL, Mountfort DO, Clements KD (2005) Gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae) and Odax pullus (Labridae). Comp Biochem Physiol B Biochem Mol Biol 140:259–269PubMedCrossRefGoogle Scholar
  280. Skiba-Cassy S, Lansard M, Panserat S, Medale F (2009) Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol Regul Integr Comp Physiol 297:R1421–R1429PubMedCrossRefGoogle Scholar
  281. Slagter BJ, Kittilson J, Sheridan MA (2005) Expression of somatostatin receptor mRNAs is regulated in vivo by growth hormone, insulin, and insulin-like growth factor-I in rainbow trout (Oncorhynchus mykiss). Regul Pept 128:27–32PubMedCrossRefGoogle Scholar
  282. Smith AJ, Partridge CJ, Asipu A, Mair LA, Hunter M, Sivaprasadarao A (2006) Increased ATP-sensitive K+ channel expression during acute glucose deprivation. Biochem Biophys Res Commun 348:1123–1131PubMedCrossRefGoogle Scholar
  283. Soengas JL, Aldegunde M (2002) Energy metabolism of fish brain. Comp Biochem Physiol B Biochem Mol Biol 131:271–296PubMedCrossRefGoogle Scholar
  284. Soengas JL, Aldegunde M (2004) Brain glucose and insulin: effects on food intake and brain biogenic amines of rainbow trout. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:641–649PubMedGoogle Scholar
  285. Soengas JL, Moon TW (1995) Uptake and metabolism of glucose, alanine and lactate by red blood cells of the American eel Anguilla rostrata. J Exp Biol 198:877–888PubMedGoogle Scholar
  286. Soengas JL, Moon TW (1998) Transport and metabolism of glucose in isolated enterocytes of the black bullhead Ictalurus melas: effects of diet and hormones. J Exp Biol 201:3263–3273PubMedGoogle Scholar
  287. Soengas JL, Fuentes J, Otero J, Andrés MD, Aldegunde M (1992) Seasonal changes in carbohydrate metabolism in the rainbow trout (Oncorhynchus mykiss) and their relationship to changes in gill (Na+–K+)-ATPase activity. Aquaculture 108:369–380CrossRefGoogle Scholar
  288. Soengas JL, Barciela P, Fuentes J, Otero J, Andrés MD, Aldegunde M (1993a) Changes in muscle carbohydrate metabolism in domesticated rainbow trout (Oncorhynchus mykiss) after transfer to seawater. Comp Biochem Physiol B Biochem Mol Biol 104:173–179Google Scholar
  289. Soengas JL, Barciela P, Fuentes J, Otero J, Andrés MD, Aldegunde M (1993b) The effect of seawater transfer in liver carbohydrate metabolism of domesticated rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 105:337–343Google Scholar
  290. Soengas JL, Sanmartín B, Barciela P, Aldegunde M, Rozas G (1993c) Changes in carbohydrate metabolism in domesticated rainbow trout (Oncorhynchus mykiss) related to spermatogenesis. Comp Biochem Physiol B Biochem Mol Biol 105:665–671Google Scholar
  291. Soengas JL, Strong EF, Fuentes J, Veira JAR, Andrés MD (1996) Food deprivation and refeeding in Atlantic salmon, Salmo salar. Effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol Biochem 15:491–511CrossRefGoogle Scholar
  292. Soengas JL, Strong EF, Andrés MD (1998a) Glucose, lactate, and β-hydroxybutyrate utilization by rainbow trout brain: changes during food deprivation. Physiol Zool 71:285–293PubMedGoogle Scholar
  293. Soengas JL, Strong EF, Andrés MD, Aldegunde M (1998b) Dose-dependent effects of acute melatonin treatments on brain carbohydrate metabolism of rainbow trout. Fish Physiol Biochem 18:311–319CrossRefGoogle Scholar
  294. Soengas JL, Polakof S, Chen X, Sangiao-Alvarellos S, Moon TW (2006) Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes with food deprivation and refeeding. Am J Physiol Regul Integr Comp Physiol 291:R810–R821PubMedCrossRefGoogle Scholar
  295. Stewart JK, Goodner CJ, Koerker DJ, Gorbman A, Ensinck J, Kaufman M (1978) Evidence for a biological role of somatostatin in the Pacific hagfish, Eptatretus stouti. Gen Comp Endocrinol 36:408–414PubMedCrossRefGoogle Scholar
  296. Stone DAJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369CrossRefGoogle Scholar
  297. Sugita H, Kawasaki J, Deguchi Y (1997) Production of amylase by the intestinal microflora in cultured freshwater fish. Lett Appl Microbiol 24:105–108PubMedCrossRefGoogle Scholar
  298. Sugita T, Shimeno S, Hosokawa H, Masumoto T (1999) Response of hepatopancreatic enzyme activities and metabolic intermediate concentrations to bovine insulin and glucose administration in carp Cyprinus carpio. Bull Jpn Soc Sci Fish 65:896–900CrossRefGoogle Scholar
  299. Tan Q, Wang F, Xie S, Zhu X, Lei W, Shen J (2009) Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio). Aquac Res 40:1011–1018CrossRefGoogle Scholar
  300. Tashima L, Cahill GF (1968) Effects of insulin in toadfish Opsanus tau. Gen Comp Endocrinol 11:262–271PubMedCrossRefGoogle Scholar
  301. Terova G, Rimoldi S, Brambilla F, Gornati R, Bernardini G, Saroglia M (2009) In vivo regulation of GLUT2 mRNA in sea bass (Dicentrarchus labrax) in response to acute and chronic hypoxia. Comp Biochem Physiol B Biochem Mol Biol 152:306–316PubMedCrossRefGoogle Scholar
  302. Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y (2002) Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 133:609–646PubMedCrossRefGoogle Scholar
  303. Thorpe A, Ince BW (1974) The effects of pancreatic hormones, catecholamines, and glucose loading on blood metabolites in the northern pike (Esox lucius L.). Gen Comp Endocrinol 23:29–44PubMedCrossRefGoogle Scholar
  304. Tintos A, Gesto M, Míguez JM, Soengas JL (2007) Naphthalene treatment alters liver intermediary metabolism and levels of steroid hormones in plasma of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 66:139–147PubMedCrossRefGoogle Scholar
  305. Tranulis MA, Dregni O, Christophersen B, Krogdahl A, Borrebaek B (1996) A glucokinase-like-enzyme in the liver of Atlantic salmon (Salmo salar). Comp Biochem Physiol A Physiol 114:35–39CrossRefGoogle Scholar
  306. Tranulis MA, Christophersen B, Borrebaek B (1997) Glucokinase in Atlantic halibut (Hippoglossus hippoglossus) Brockmann bodies. Comp Biochem Physiol B Biochem Mol Biol 116:367–370CrossRefGoogle Scholar
  307. Tse CM, Young JD (1990) Glucose transport in fish erythrocytes: variable cytochalasin-B-sensitive hexose transport activity in the common eel (Anguilla japonica) and transport deficiency in the paddyfield eel (Monopterus albus) and rainbow trout (Salmo gairdneri). J Exp Biol 148:367–383PubMedGoogle Scholar
  308. Tseng Y-C, Chen R-D, Lee J-R, Liu S-T, Lee S-J, Hwang P-P (2009) Specific expression and regulation of glucose transporters in zebrafish ionocytes. Am J Physiol Regul Integr Comp Physiol 297:R275–R290PubMedCrossRefGoogle Scholar
  309. Tseng Y-C, Chen R-D, Lucassen M, Schmidt MM, Dringen R, Abele D, Hwang P-P (2011) Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish. PLoS ONE 6:e18180PubMedCrossRefGoogle Scholar
  310. Ugolev AM, Kuz’mina VV (1994) Fish enterocyte hydrolases. Nutrition adaptations. Comp Biochem Physiol A Physiol 107:187–193CrossRefGoogle Scholar
  311. Van Raaij MT, van den Thillart GE, Hallemeesch M, Balm PH, Steffens AB (1995) Effect of arterially infused catecholamines and insulin on plasma glucose and free fatty acids in carp. Am J Physiol 268:R1163–R1170PubMedGoogle Scholar
  312. Velisek J, Svobodoba Z (2004) Anaesthesia of rainbow trout (Oncorhynchus mykiss) with 2-phenoxyethanol: acute toxicity and biochemical blood profile. Acta Vet Brno 73:379–384CrossRefGoogle Scholar
  313. Very NM, Knutson D, Kittilson JD, Sheridan MA (2001) Somatostatin inhibits growth of rainbow trout. J Fish Biol 59:157–165CrossRefGoogle Scholar
  314. Volkoff H, Eykelbosh AJ, Peter RE (2003) Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res 972:90–109PubMedCrossRefGoogle Scholar
  315. Wagner EJ, Bosakowski T, Intelmann S (1997) Combined effects of temperature and high pH on mortality and the stress response of rainbow trout after stocking. Trans Am Fish Soc Symp 126:985–998CrossRefGoogle Scholar
  316. Walton MJ (1986) Metabolic effects of feeding a high protein/low carbohydrate diet as compared to a low protein/high carbohydrate diet to rainbow trout Salmo gairdneri. Fish Physiol Biochem 1:7–15CrossRefGoogle Scholar
  317. Washburn BS, Bruss ML, Avery EH, Freedland RA (1992) Effects of estrogen on whole animal and tissue glucose use in female and male rainbow trout. Am J Physiol Regul Integr Comp Physiol 263:R1241–R1247Google Scholar
  318. Watkins D, Cooperstein S, Lazarow A (1973) Effect of alloxan on islet tissue permeability: protection and reversal by sugars. Am J Physiol 224:718–722PubMedGoogle Scholar
  319. Weber JM, Brill RW, Hochachka PW (1986) Mammalian metabolite flux rates in a teleost: lactate and glucose turnover in tuna. Am J Physiol Regul Integr Comp Physiol 250:R452–R458Google Scholar
  320. Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80CrossRefGoogle Scholar
  321. Wilson RP, Poe WE (1987) Apparent inability of channel catfish to utilize dietary mono- and disaccharides as energy sources. J Nutr 117:280–285PubMedGoogle Scholar
  322. Wittenberger C, Coprean D, Morar L (1975) Studies on the carbohydrate metabolism of the lateral muscles in carp (influence of phloridzin, insulin and adrenaline). J Comp Physiol B Biochem Syst Environ Physiol 101:161–172CrossRefGoogle Scholar
  323. Wolf K, Rumsey G (1985) The representative research animal: why rainbow trout (Salmo gairdneri). Z Angew Ichthyol 3:131–138CrossRefGoogle Scholar
  324. Woodward CC, Strange RJ (1987) Physiological stress responses in wild and hatchery-reared rainbow trout. Trans Am Fish Soc 116:574–579CrossRefGoogle Scholar
  325. Wright JR Jr (2002) From ugly fish to conquer death: J J R Macleod’s fish insulin research, 1922–24. Lancet 359:1238–1242PubMedCrossRefGoogle Scholar
  326. Wright PA, Perry SF, Moon TW (1989) Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol 147:169–188PubMedGoogle Scholar
  327. Wright JR Jr, O’Hali W, Yang H, Han X, Bonen A (1998) GLUT-4 deficiency and severe peripheral resistance to insulin in the teleost fish tilapia. Gen Comp Endocrinol 111:20–27PubMedCrossRefGoogle Scholar
  328. Zambonino Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C Toxicol Pharmacol 130:477–487PubMedCrossRefGoogle Scholar
  329. Zhang C, Miki T, Shibasaki T, Yokokura M, Saraya A, Seino S (2006) Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiol Genomics 24:290–297PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sergio Polakof
    • 1
    • 2
  • Stéphane Panserat
    • 3
  • José L. Soengas
    • 4
  • Thomas W. Moon
    • 5
  1. 1.INRA, Human Nutrition Unit-UMR 1019, UNH, CRNH AuvergneClermont-FerrandFrance
  2. 2.Unité de Nutrition HumaineClermont Université, Université d’AuvergneClermont-FerrandFrance
  3. 3.INRA, UR1067 Nutrition Metabolism AquacultureSaint-Pée-sur-NivelleFrance
  4. 4.Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de BioloxíaUniversidade de VigoVigoSpain
  5. 5.Department of Biology and Centre for Advanced Research in Environmental GenomicsUniversity of OttawaOttawaCanada

Personalised recommendations