Journal of Comparative Physiology B

, Volume 180, Issue 3, pp 415–425 | Cite as

Thermal strategies and energetics in two sympatric colubrid snakes with contrasted exposure

  • Hervé Lelièvre
  • Maxime Le Hénanff
  • Gabriel Blouin-Demers
  • Guy Naulleau
  • Olivier Lourdais
Original Paper

Abstract

The thermoregulatory strategy of reptiles should be optimal if ecological costs (predation risk and time devoted to thermoregulation) are minimized while physiological benefits (performance efficiency and energy gain) are maximized. However, depending on the exact shape of the cost and benefit curves, different thermoregulatory optima may exist, even between sympatric species. We studied thermoregulation in two coexisting colubrid snakes, the European whipsnake (Hierophis viridiflavus, Lacépède 1789) and the Aesculapian snake (Zamenis longissimus, Laurenti 1768) that diverge markedly in their exposure, but otherwise share major ecological and morphological traits. The exposed species (H. viridiflavus) selected higher body temperatures (~30°C) than the secretive species (Z. longissimus, ~25°C) both in a laboratory thermal gradient and in the field. Moreover, this difference in body temperature was maintained under thermophilic physiological states such as digestion and molting. Physiological and locomotory performances were optimized at higher temperatures in H. viridiflavus compared to Z. longissimus, as predicted by the thermal coadaptation hypothesis. Metabolic and energetic measurements indicated that energy requirements are at least twice higher in H. viridiflavus than in Z. longissimus. The contrasted sets of coadapted traits between H. viridiflavus and Z. longissimus appear to be adaptive correlates of their exposure strategies.

Keywords

Ectotherm Thermal preference Coadaptation Metabolic reaction norm Energy budget Thermoregulatory strategy 

References

  1. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268CrossRefGoogle Scholar
  2. Angilletta MJ, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS (2006) Coadaptation: a unifying principle in evolutionary thermal biology. Physiol Biochem Zool 79(2):282–294CrossRefPubMedGoogle Scholar
  3. Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216Google Scholar
  4. Belliure J, Carrascal LM, Diaz JA (1996) Covariation of thermal biology and foraging mode in two Mediterranean lacertid lizards. Ecology 77(4):1163–1173CrossRefGoogle Scholar
  5. Ben Ezra E, Bulté G, Blouin-Demers G (2008) Are locomotor performances coadapted to preferred basking temperature in the Northern Map Turtle (Graptemys geographica)? J Herpetol 42(2):322–331CrossRefGoogle Scholar
  6. Bennett AF, Hicks JW, Cullum AJ (2000) An experimental test of the thermoregulatory hypothesis for the evolution of endothermy. Evolution 54(5):1768–1773PubMedGoogle Scholar
  7. Blouin-Demers G, Nadeau P (2005) The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behaviour. Ecology 86(3):560–566CrossRefGoogle Scholar
  8. Blouin-Demers G, Weatherhead PJ (2001a) An experimental test of the link between foraging, habitat selection and thermoregulation in a black rat snakes Elaphe obsoleta obsoleta. J Anim Ecol 70:1006–1013CrossRefGoogle Scholar
  9. Blouin-Demers G, Weatherhead PJ (2001b) Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82(11):3025–3043Google Scholar
  10. Blouin-Demers G, Weatherhead PJ (2002) Habitat-specific behavioral thermoregulation by black rat snake (Elaphe obsoleta obsoleta). Oikos 97(1):59–68CrossRefGoogle Scholar
  11. Blouin-Demers G, Weatherhead PJ, McCracken HA (2003) A test of the thermal coadaptation hypothesis with black rat snakes (Elaphe obsoleta) and northern water snakes (Nerodia sipedon). J Therm Biol 28:331–340CrossRefGoogle Scholar
  12. Bonnet X, Naulleau G, Shine R (1999) The dangers of leaving home: dispersal and mortality in snakes. Biol Conserv 89:39–50CrossRefGoogle Scholar
  13. Brown GP, Weatherhead PJ (2000) Thermal ecology and sexual size dimorphism in northern water snakes, Nerodia sipedon. Ecol Monogr 70(2):311–330Google Scholar
  14. Bulté G, Blouin-Demers G (2006) Cautionary notes on the descriptive analysis of performance curves in reptiles. J Therm Biol 31(4):287–291CrossRefGoogle Scholar
  15. Capizzi D, Luiselli L (1996) Feeding relationships and competitive interactions between phylogenetically unrelated predators (owls and snakes). Acta Oecol 17(4):265–284Google Scholar
  16. Capizzi D, Luiselli L, Capula M, Rugiero L (1995) Feeding habits of a mediterranean community of snakes in relation to prey availability. Revue d’Ecologie-la Terre et la Vie 50(4):353–363Google Scholar
  17. Carfagno GLF, Weatherhead PJ (2006) Intraspecific and interspecific variation in use of forest-edge habitat by snakes. Can J Zool 84(10):1440–1452CrossRefGoogle Scholar
  18. Carfagno GLF, Weatherhead PJ (2008) Energetics and space use: intraspecific and interspecific comparisons of movements and home ranges of two colubrid snakes. J Anim Ecol 77:416–424CrossRefPubMedGoogle Scholar
  19. Christian KA, Weavers BW (1996) Thermoregulation of monitor lizards in Australia: an evaluation of methods in thermal biology. Ecol Monogr 66:139–167CrossRefGoogle Scholar
  20. Cooper WE (1998) Risk factors and emergence from refuge in the lizard Eumeces laticeps. Behaviour 135:1065–1076Google Scholar
  21. Downes S (2001) Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82(10):2870–2881CrossRefGoogle Scholar
  22. Du WG, Shou L, Shen JY (2006) Habitat selection in two sympatric Chinese skinks, Eumeces elegans and Sphenomorphus indicus: do thermal preferences matter? Can J Zool 84(9):1300–1306CrossRefGoogle Scholar
  23. Dubois Y, Blouin-Demers G, Shipley B, Thomas D (2009) Thermoregulation and habitat selection in wood turtles Glyptemys insculpta: chasing the sun slowly. J Anim Ecol 78(5):1023–1032CrossRefPubMedGoogle Scholar
  24. Filippi E, Luiselli L (2006) Changes in community composition, habitats and abundance of snakes over 10+ years in a protected area in Italy: conservation implications. Herpetol J 16(1):29–36Google Scholar
  25. Fitzgerald M, Shine R, Lemckert F (2003) A reluctant heliotherm: thermal ecology of the arboreal snake Hoplocephalus stephensii (Elapidae) in dense forest. J Therm Biol 28:515–524CrossRefGoogle Scholar
  26. Garland T Jr, Adolph SC (1994) Why not to do 2-species comparative studies—limitations on inferring adaptation. Physiol Zool 67(4):797–828Google Scholar
  27. Gibson AR, Smucny DA, Kollar J (1989) The effects of feeding and ecdysis on temperature selection by young garter snakes in a simple thermal mosaic. Can J Zool 67(1):19–23CrossRefGoogle Scholar
  28. Goldsbrough CL, Hochuli DF, Shine R (2004) Fitness benefits of retreat site selection: spiders, rocks and thermal cues. Ecology 85(6):1635–1641CrossRefGoogle Scholar
  29. Gregory PT, Crampton LH, Skebo KM (1999) Conflicts and interactions among reproduction, thermoregulation and feeding in viviparous reptiles: are gravid snakes anorexic? J Zool 248:231–241CrossRefGoogle Scholar
  30. Grover MC (1996) Microhabitat use and thermal ecology of two narrowly sympatric Sceloporus (Phrynosomatidae) lizards. J Herpetol 30(2):152–160CrossRefGoogle Scholar
  31. Gvoždík L (2002) To heat or to save time? Thermoregulation in the lizard Zootoca vivipara (Squamata: Lacertidae) in different thermal environments along altitudinal gradient. Can J Zool 80:479–492CrossRefGoogle Scholar
  32. Hertz PE, Huey RB, Nevo E (1982) Fight versus flight: body temperature influences defensive responses of lizards. Anim Behav 30:676–679CrossRefGoogle Scholar
  33. Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142(5):796–818CrossRefPubMedGoogle Scholar
  34. Huey RB (1991) Physiological consequences of habitat selection. Am Nat 137:91–115CrossRefGoogle Scholar
  35. Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation—preferred temperatures versus optimal performance temperatures of lizards. Evolution 41(5):1098–1115CrossRefGoogle Scholar
  36. Huey RB, Hertz PE (1984) Is a-jack-of-all temperatures a master of none? Evolution 38(2):441–444CrossRefGoogle Scholar
  37. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4(5):131–135CrossRefGoogle Scholar
  38. Huey RB, Slatkin M (1976) Costs and benefits of lizard thermoregulation. Q Rev Biol 51:363–384CrossRefPubMedGoogle Scholar
  39. Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366Google Scholar
  40. Kearney M (2002) Hot rocks and much-too-hot rocks: seasonal patterns of retreat-site selection by a nocturnal ectotherm. J Therm Biol 27(3):205–218CrossRefGoogle Scholar
  41. Kearney M, Predavec M (2000) Do nocturnal ectotherms thermoregulate? A study of the temperate gecko Christinus marmoratus. Ecology 81(11):2984–2996Google Scholar
  42. Kery M (2002) Inferring the absence of a species—a case study of snakes. J Wildl Manage 66(2):330–338CrossRefGoogle Scholar
  43. Knies JL, Kingsolver JG, Burch CL (2009) Hotter is better and broader: thermal sensitivity of fitness in a population of bacteriophages. Am Nat 173(4):419–430CrossRefPubMedGoogle Scholar
  44. Lasiewski RC, Acosta AL, Bernstein ML (1966) Evaporative water loss in birds. I. Characteristics of the open flow method of determination and their relation to estimates of thermoregulatory ability. Comp Biochem Physiol 19:445–457CrossRefGoogle Scholar
  45. Lenk P, Joger U, Wink M (2001) Phylogenetic relationships among European ratsnakes of the genus Elaphe Fitzinger based on mitochondrial DNA sequence comparisons. Amphib-reptil 22(3):329–339CrossRefGoogle Scholar
  46. Luiselli L (2006) Ecological modelling of convergence patterns between European and African ‘whip’ snakes. Acta Oecol 30(1):62–68CrossRefGoogle Scholar
  47. Luiselli L, Capizzi D (1997) Influences of area, isolation and habitat features on distribution of snakes in Mediterranean fragmented woodlands. Biodivers Conserv 6(10):1339–1351CrossRefGoogle Scholar
  48. Luiselli L, Filippi E, Di Lena E (2007) Ecological relationships between sympatric Vipera aspis and Vipera ursinii in high-altitude habitats of central Italy. J Herpetol 41(3):378–384CrossRefGoogle Scholar
  49. Martin J (2001) When hiding from predators is costly: optimization of refuge use in lizards. Etologia 9:9–13Google Scholar
  50. Martin J, Lopez P (1999) When to come out from a refuge: risk-sensitive and state-dependent decisions in a alpine lizard. Behav Ecol 10(5):487–492CrossRefGoogle Scholar
  51. Nagy KA (1983) Ecological energetics. In: Huey RB, Pianka ER, Schoener TW (eds) Lizard ecology: studies of a model organism. Harvard University Press, Cambridge, pp 24–54Google Scholar
  52. Naulleau G (1984) Les serpents de France, Revue Française d’Aquariologie, ParisGoogle Scholar
  53. Naulleau G (1997) Coluber viridiflavus (Lacepède, 1789) Atlas of Amphibians and Reptiles in Europe. Societas Herpetologica et Muséum National d’Histoire Naturelle Paris, pp 342–343Google Scholar
  54. Nevo E, Rashkovetsky E, Pavlicek T, Korol A (1998) A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80(1):9–16CrossRefPubMedGoogle Scholar
  55. Pearson DJ, Shine R, Williams A (2003) Thermal biology of large snakes in cool climates: a radio-telemetric study of carpet pythons (Morelia spilota imbricata) in southwestern Australia. J Therm Biol 28:117–131CrossRefGoogle Scholar
  56. Pianka ER, Pianka HD (1970) Ecology of Moloch horridus (Lacertilia Agamidae) in western Australia. Copeia 1970:90–103Google Scholar
  57. Pierce JB, Fleet RR, McBrayer L, Rudolph DC (2008) Use of trees by the Texas ratsnake (Elaphe obsoleta) in eastern Texas. Southeast Nat 7(2):359–366CrossRefGoogle Scholar
  58. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  59. Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226PubMedGoogle Scholar
  60. Reinert HK (1984) Habitat variation within sympatric snake populations. Ecology 65(5):1673–1682CrossRefGoogle Scholar
  61. Reinert HR, Cundall D (1982) An improved surgical implantation method for radio-tracking snakes. Copeia 1982(3):702–705CrossRefGoogle Scholar
  62. Robert KA, Thompson MB (2003) Reconstructing thermochron iButtons to reduce size and weight as a new technique in the study of small animal thermal biology. Herpetol Rev 34(2):130–132Google Scholar
  63. Row J, Blouin-Demers G (2007) Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milksnakes. Oecologia 148:1–11CrossRefGoogle Scholar
  64. Rugiero L, Capizzi D, Luiselli L (2002) Interactions between sympatric snakes, Coluber viridiflavus and Elaphe longissima: are there significant inter-annual differences in coexistence patterns? Ecol Mediterr 28(2):75–91Google Scholar
  65. Sartorius SS, do Amaral JPS, Durtsche RD, Deen CM, Lutterschmidt WI (2002) Thermoregulatory accuracy, precision, and effectiveness in two sand-dwelling lizards under mild environmental conditions. Can J Zool 80:1966–1976CrossRefGoogle Scholar
  66. Scheers H, Van Damme R (2002) Micro-scale differences in thermal habitat quality and a possible case of evolutionary flexibility in the thermal physiology of lacertid lizards. Oecologia 132(3):323–331CrossRefGoogle Scholar
  67. Secor SM, Nagy KA (1994) Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology 75(6):1600–1614CrossRefGoogle Scholar
  68. Shine R (1980) Ecology of eastern Australian whipsnakes of the genus Demansia. J Herpetol 14(4):381–389CrossRefGoogle Scholar
  69. Shine R, Elphick MJ, Harlow PS (1997) The influence of natural incubation environments on the phenotypic traits of hatchling lizards. Ecology 78(8):2559–2568CrossRefGoogle Scholar
  70. Sievert LM, Jones DM, Puckett MW (2005) Postprandial thermophily, transit rate, and digestive efficiency of juvenile cornsnakes, Pantherophis guttatus. J Therm Biol 30(5):354–359CrossRefGoogle Scholar
  71. Singh S, Smyth AK, Blomberg SP (2002) Thermal ecology and structural habitat use of two sympatric lizards (Carlia vivax and Lygisaurus foliorum) in subtropical Australia. Aust Ecol 27:616–623CrossRefGoogle Scholar
  72. Sperry JH, Weatherhead PJ (2009) Sex differences in behavior associated with sex-biased mortality in an oviparous snake species. Oikos 118(4):627–633Google Scholar
  73. Stevenson RD, Peterson CR, Tsuji J (1985) The thermal dependence of locomotion, tongue flicking, digestion, and oxygen consumption in the wandering garter snake. Physiol Zool 58:46–57Google Scholar
  74. Tattersall GJ, Milsom WK, Abe AS, Brito SP, Andrade DV (2004) The thermogenesis of digestion in rattlesnakes. J Exp Biol 207:579–585CrossRefPubMedGoogle Scholar
  75. Tsai TS, Tu MC (2005) Postprandial thermophily of Chinese green tree vipers, Trimeresurus s. stejnegeri: Interfering factors on snake temperature selection in a thigmothermal gradient. J Therm Biol 30(6):423–430CrossRefGoogle Scholar
  76. Whitaker PB, Shine R (2002) Thermal biology and activity patterns of the eastern brownsnake (Pseudonaja textilis): a radiotelemetric study. Herpetologica 58(4):436–452CrossRefGoogle Scholar
  77. Whitaker PB, Shine R (2003) A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetol Monogr 17:130–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hervé Lelièvre
    • 1
    • 2
  • Maxime Le Hénanff
    • 1
    • 2
  • Gabriel Blouin-Demers
    • 3
  • Guy Naulleau
    • 1
  • Olivier Lourdais
    • 1
  1. 1.Centre d’Études Biologiques de Chizé, CNRS UPR 1934Villiers en BoisFrance
  2. 2.Université de PoitiersPoitiersFrance
  3. 3.Département de BiologieUniversité d’OttawaOttawaCanada

Personalised recommendations