Role of permanent host association with the Madagascar hissing-cockroach, Gromphadorhinaportentosa, on the developmental water requirements of the mite, Gromphadorholaelapsschaeferi

  • J. A. Yoder
  • B. Z. Hedges
  • J. B. Benoit
  • G. D. Keeney
Original Paper


We provide the first complete description of the water requirements for the hissing-cockroach mite, Gromphadorholaelapsschaeferi, focusing on characteristics that result from the restriction of all stages to the Madagascar hissing-cockroach (Gromphadorhinaportentosa). Particularly, we determine how G. schaeferi spends its entire life on the same individual cockroach. This mite is not parasitic, rather they feed on cockroach saliva and other moist organic debris that accumulates between the cockroach’s legs. Water balance characteristics of this mite show that it is extremely hydrophilic and that it must maintain a high percentage body water content to function properly despite being very porous (high net transpiration rate) and sensitive to water loss, tolerating only 20% loss of their water content before death. This hydrophilic trend starts with the larva and is retained into adulthood. Developmentally, a shift occurs during postlarval development from an emphasis on water gain (low critical equilibrium activity for water vapor absorption from drier air) in the protonymph to an emphasis on water retention (reduced net transpiration rate for water conservation) in the adult. The minute-sized larva is prevented from replenishing water stores by water vapor absorption or feeding because it lacks functional mouthparts, thus dries up rapidly. To avoid dehydration and survive, the larval stage utilizes a quick shoot-through molt to the protonymph that can feed and grow. Our conclusion is that the hissing-cockroach creates an ideal, stable moisture-rich microhabitat that satisfies the high water demand for G. schaeferi during all stages, fixing this mite to a single cockroach as an ecological niche.


Water balance Symbiosis Mite Hissing-cockroach 


  1. Arlian LG, Ekstrand IA (1975) Water balance in Drosophilia pseudoobscura, and its ecological implications. Ann Entomol Soc Am 68:827–832Google Scholar
  2. Athias-Binche F (1986) Signification adaptative des différents types de développements postembryonnaires chez les Gamasides (Acariens: Anactinotriches). Can J Zool 65:1299–1310CrossRefGoogle Scholar
  3. Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2007) Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, nonfed and engorged stages. J Comp Physiol B 177:205–215PubMedCrossRefGoogle Scholar
  4. Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2008) Adaptations for the maintenance of water balance by three species of Antarctic mites. Polar Biol 31:539–547CrossRefGoogle Scholar
  5. Evans GO (1992) Principles of acarology. Cambridge University, CambridgeGoogle Scholar
  6. Gaede K, Knülle W (1997) On the mechanism of water vapour sorption from unsaturated atmospheres by ticks. J Exp Biol 200:1491–1498PubMedGoogle Scholar
  7. Gerdeman BS, Klompen JSH, Yoder JA (1998) The larva of Gromphadorholaelaps schaeferi Till (Acari: Laelapidae), an associate of the Madagascar hissing-cockroach, Gromphadorhina portentosa (Schaum). Int J Acarol 24:301–305CrossRefGoogle Scholar
  8. Hadley NF (1994) Water relations of terrestrial arthropods. Academic, New YorkGoogle Scholar
  9. Johnson CG (1940) The maintenance of high atmospheric humidities for entomological work with glycerol–water mixtures. Ann Appl Biol 27:295–299CrossRefGoogle Scholar
  10. Kahl O, Alidousti I (1997) Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol 21:731–746CrossRefGoogle Scholar
  11. Karg W (1991) New species of the genus Androlaelaps Berlese (Mesostigmata: Laelapidae) from a cockroach in Madagascar. Int J Acarol 17:165–168CrossRefGoogle Scholar
  12. Needham GR, Teel PD (1986) Water balance by ticks between bloodmeals. In: Sauer JR, Hair JA (eds) Morphology, physiology, and behavioral biology of ticks. Ellis Horwood, Chichester, pp 100–151Google Scholar
  13. Schaefer CW, Peckham DB (1968) Host preference studies on a mite infesting the cockroach Gromphadorhina portentosa. Ann Entomol Soc Am 61:1475–1478Google Scholar
  14. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, San FranciscoGoogle Scholar
  15. Till WM (1969) A new laelapine mite from the Madagascar hissing-cockroach, Gromphadorhina portentosa (Schaum). Acarologia 11:515–523Google Scholar
  16. Toolson EC (1978) Diffusion of water through the arthropod cuticle: thermodynamic consideration of the transition phenomenon. J Therm Biol 3:69–73CrossRefGoogle Scholar
  17. Wharton GW (1985) Water balance of insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 4. Pergamon, Oxford, pp 565–603Google Scholar
  18. Winston PW, Bates DS (1960) Saturated salt solutions for the control of humidity in biological research. Ecology 41:232–237CrossRefGoogle Scholar
  19. Yoder JA (1996) The Madagascar hissing-cockroach mite (Gromphadorholaelaps schaeferi): first observation of its larva and ptyalophagy in the Acari. Int J Acarol 22:141–148CrossRefGoogle Scholar
  20. Yoder JA (1997) Exterminator-mites (Acari: Dermanyssidae) on the giant Madagascar hissing-cockroach. Int J Acarol 23:233–236CrossRefGoogle Scholar
  21. Yoder JA (1998) A comparison of the water balance characteristics of Typhlodromus occidentalis and Amblyseius finlandicus mites (Acari: Phytoseiidae) and evidence for the site of water vapour uptake. Exp App Acarol 22:279–286CrossRefGoogle Scholar
  22. Yoder JA, Barcelona JC (1995) Food and water resources used by the Madagascan hissing-cockroach mite, Gromphadorholaelaps schaeferi. Exp Appl Acarol 19:259–273CrossRefGoogle Scholar
  23. Yoder JA, Houck MA (2001) Xeric survival without drinking by hypopodes of Hemisarcoptes cooremani (Acari: Hemisarcoptidae). Int J Acarol 27:59–62CrossRefGoogle Scholar
  24. Yoder JA, Spielman A (1992) Differential capacity of larval deer ticks (Ixodes dammini) to imbibe water from subsaturated air. J Insect Physiol 3:863–869CrossRefGoogle Scholar
  25. Yoder JA, Sammataro D, Peterson JA, Needham GR, Bruce WA (1999) Water requirements of adult females of the honey bee parasitic mite, Varroa jacobsoni (Acari: Varroidae) and implications for control. Int J Acarol 25:329–335CrossRefGoogle Scholar
  26. Yoder JA, Mahmood SS, Lalli PN (2001) Semiochemical parsimony between the Madagascar hissing-cockroach mite and its host. Int J Acarol 27:139–143CrossRefGoogle Scholar
  27. Yoder JA, Ark JT, Benoit JB, Rellinger EJ, Gribbins KM (2006a) Water balance components in adults of the terrestrial red mite Balaustium sp. (Acarina: Erythraeidae). Ann Entomol Soc Am 99:560–566CrossRefGoogle Scholar
  28. Yoder JA, Benoit JB, Rellinger EJ, Tank JL (2006b) Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus. Med Vet Entomol 20:365–372PubMedCrossRefGoogle Scholar
  29. Yoder JA, Chambers MJ, Condon MR, Benoit JB, Zettler LW (2009) Regulation of the external mycoflora of the giant Madagascar hissing-cockroach, Gromphadorhina portentosa, by its mite associate, Gromphadorholaelaps schaeferi, and its implications on human health. Symbiosis (in press)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. A. Yoder
    • 1
  • B. Z. Hedges
    • 1
  • J. B. Benoit
    • 2
  • G. D. Keeney
    • 2
  1. 1.Department of BiologyWittenberg UniversitySpringfieldUSA
  2. 2.Department of EntomologyThe Ohio State UniversityColumbusUSA

Personalised recommendations