Skip to main content
Log in

Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and μ-opioid receptors

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Location of the lung respiratory rhythm generator (RRG) in the bullfrog brainstem was investigated by examining neurokinin-1 and μ-opioid receptor (NK1R, μOR) colocalization by immunohistochemistry and characterizing the role of these receptors in lung rhythm and episodic pattern generation. NK1R and μOR occurred in brainstems from all developmental stages. In juvenile bullfrogs a distinct area of colocalization was coincident with high-intensity fluorescent labeling of μOR; high-intensity labeling of μOR was not distinctly and consistently localized in tadpole brainstems. NK1R labeling intensity did not change with development. Similarity in colocalization is consistent with similarity in responses to substance P (SP, NK1R agonist) and DAMGO (μOR agonist) when bath applied to bullfrog brainstems of different developmental stages. In early stage tadpoles and juvenile bullfrogs, SP increased and DAMGO decreased lung burst frequency. In juvenile bullfrogs, SP increased lung burst frequency, episode frequency, but decreased number of lung bursts per episode and lung burst duration. In contrast, DAMGO decreased lung burst frequency and burst cycle frequency, episode frequency, and number of lung bursts per episode but increased all other lung burst parameters. Based on these results, we hypothesize that NK1R and μOR colocalization together with a metamorphosis-related increase in μOR intensity marks the location of the lung RRG but not necessarily the lung episodic pattern generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adli DSH, Steusse SL, Cruce WLR (1999) Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens. J Comp Neurol 404:387–407

    Article  PubMed  CAS  Google Scholar 

  • Bayliss D, Viana F, Berger A (1992) Mechanisms underlying excitatory effects of thyrotropin-releasing hormone on rat hypoglossal motoneurons in vitro. J Neurophysiol 68:1733–1745

    PubMed  CAS  Google Scholar 

  • Belzile O, Gulemetova R, Kinkead R (2002) Role of 5HT2A/C receptors in serotonergic modulation of respiratory motor output during tadpole development. Respir Physiol Neurobiol 133:277–282

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Hedrick M (2008) Role of glutamate and substance P in the amphibian respiratory network during development. Respir Physiol Neurobiol. doi:10-1016/j.resp.2008.03.010

  • Chen Z, Hedner T, Hedner J (1990) Local application of somatostatin in the rat ventrolateral brain medulla induces apnea. J Appl Physiol 69:2233–2238

    PubMed  CAS  Google Scholar 

  • Dong X, Feldman J (1995) Modulation of inspiratory drive to phrenic motoneurons by presynaptic adenosine A1 receptors. J Neurosci 15:3458–3467

    PubMed  CAS  Google Scholar 

  • Folbergrova J, Norberg K, Quistorff B, Siesjo B (1975) Carbohydrate and amino acid metabolism in rat cerebral cortex in moderate and extreme hypercapnia. J Neurochem 25:457–462

    Article  PubMed  CAS  Google Scholar 

  • Galante R, Kubin L, Fishman A, Pack A (1996) Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana. J Physiol 492:545–558

    PubMed  CAS  Google Scholar 

  • Gdovin M, Torgerson C, Remmers J (1996) Characterization of gill and lung ventilatory activity in cranial nerves in the spontaneously breathing tadpole, Rana catesbeiana. FASEB J 10:A642

    Google Scholar 

  • Gray P, Rekling J, Bocchiaro C, Feldman J (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 286:1566–1568

    Article  PubMed  CAS  Google Scholar 

  • Gray P, Janczewski W, Mellen N, McCrimmon D, Feldman J (2001) Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4:927–930

    Article  PubMed  CAS  Google Scholar 

  • Guyenet P, Mulkey D, Stornetta R, Bayliss D (2005) Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J Neurosci 25:8938–8947

    Article  PubMed  CAS  Google Scholar 

  • Harris M, Wilson R, Vasilakos K, Taylor B, Remmers J (2002) Central respiratory activity of the tadpole in vitro brain stem is modulated diversely by nitric oxide. Am J Regulatory Int Comp Physiol 283:R417–R428

    CAS  Google Scholar 

  • Jackson D (1978) Respiratory control in air breathing ectotherms. In: Davies D, Barnes C (eds) Regulation of ventilation and gas exchange. Academic Press, Dublin, pp 93–130

    Google Scholar 

  • Kazemi H, Hoop B (1991) Glutamic acid and gamma-aminobutyric acid neurotransmitters in central control of breathing. J Appl Physiol 70:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kinkead R (1997) Episodic breathing in frogs: converging hypotheses on neural control of respiration in air breathing vertebrates. Amer Zool 37:31–40

    Google Scholar 

  • Kinkead R, Milsom W (1994) Chemoreceptors and control of episodic breathing in the bullfrog (Rana catesbeiana). Respir Physiol 95:81–98

    Article  PubMed  CAS  Google Scholar 

  • Kinkead R, Milsom W (1996) CO2-sensitive olfactory and pulmonary receptor modulation of episodic breathing in bullfrogs. Am J Physiol 270:R134–R144

    PubMed  CAS  Google Scholar 

  • Kinkead R, Milsom W (1997) Role of pulmonary stretch receptor feedback in the control of episodic breathing in the bullfrog. Am J Physiol 272:R497–R508

    PubMed  CAS  Google Scholar 

  • Kinkead R, Filmyer W, Mitchell G, Milsom W (1994) Vagal input enhances responsiveness of respiratory discharge to central changes in pH/CO2 in bullfrogs. J Appl Physiol 77:2048–2051

    PubMed  CAS  Google Scholar 

  • Liu Y, Wong-Riley M, Liu J, Wei X, Jia Y, Liu H, Fujiyama F, Ju G (2004) Substance P and enkephalinergic synapses onto neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats. Eur J Neurosci 19:65–75

    Article  PubMed  Google Scholar 

  • Llona I, Ampuero E, Eugenin J (2004) Somatostatin inhibition of fictive respiration is modulated by pH. Brain Res 1026:136–142

    Article  PubMed  CAS  Google Scholar 

  • Maggi C, Patacchini R, Rovero P, Giachetti A (1993) Tachykinin receptors and tachykinin receptor antagonists. J Auton Pharmacol 13:23–93

    Article  PubMed  CAS  Google Scholar 

  • Mantyh P, DeMaster E, Malhotra A, Ghilardi J, Rogers S et al (1995) Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Mantyh P, Rogers D, Monroe P, Allen B, Rea Ghilardi (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278:275–279

    Article  PubMed  CAS  Google Scholar 

  • McAneney J, Reid S (2007) Chronic hypoxia attenuates central respiratory-related pH/CO2 chemosensitivity in the cane toad. Resp Physiol Neurobiol 156:266–275

    Article  CAS  Google Scholar 

  • Mellen N, Janczewski W, Bocchiaro C, Feldman J (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37:821–826

    Article  PubMed  CAS  Google Scholar 

  • Metz B (1966) Hypercapnia and acetylcholine release from the cortex and medulla. J Physiol Lond 186:321–322

    PubMed  CAS  Google Scholar 

  • Nattie E, Li A (2002) Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity. J Physiol 544:603–616

    Article  PubMed  CAS  Google Scholar 

  • Nattie E, Prabhakar N (2001) Peripheral and central chemosensitivity: multiple mechanisms, multiple sites? A workshop summary. Adv Exp Med Biol 499:73–80

    PubMed  CAS  Google Scholar 

  • Onimaru H, Arata A, Homma I (1995) Intrinsic burst generation in pre-inspiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Exp Brain Res 106:57–68

    Article  PubMed  CAS  Google Scholar 

  • Onimaru H, Arata A, Homma I (1997) Neuronal mechanisms of respiratory rhythm generation; an approach using in vitro preparation. Jpn J Physiol 47:385–403

    Article  PubMed  CAS  Google Scholar 

  • Ptak K, Di Pasquale E, Monteau R (1999) Substance P and central respiratory activity: a comparative in vitro study on fetal and newborn rat. Brain Res Dev Brain Res 114:217–227

    Article  PubMed  CAS  Google Scholar 

  • Rekling J (1990) Excitatory effects of thyrotropin-releasing hormone (TRH) in hypoglossal motoneurons. Brain Res 510:175–179

    Article  PubMed  CAS  Google Scholar 

  • Rekling J, Feldman J (1998) PreBötzinger Complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60:385–405

    Article  PubMed  CAS  Google Scholar 

  • Smatresk N, Smits A (1991) Effects of central and peripheral chemoreceptor stimulation on ventilation in the marine toad, Bufo marinus. Respir Physiol 83:223–238

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Ellenberger H, Ballanyi K, Richter D, Feldman J (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Goiny M, Pantaleo T et al (1991) Enhanced in vivo release of substance P in the nucleus tractus solitarius during hypoxia in the rabbit: role of peripheral input. Brain Res 546:211–216

    Article  PubMed  CAS  Google Scholar 

  • Straus C, Wilson R, Remmers J (2000a) Developmental disinhibition: turning off inhibition turns on breathing in vertebrates. J Neurobiol 45:75–83

    Article  PubMed  CAS  Google Scholar 

  • Straus C, Wilson R, Tezenas du Montcel S, Remmers J (2000b) Baclofen eliminated cluster lung breathing of the tadpole brainstem, in vitro. Neurosci Lett 292:13–16

    Article  PubMed  CAS  Google Scholar 

  • Stuesse S, Adli D, Cruce W (2001) Immunochemical distribution of enkephalin, substance P and somatostatin in the brainstem of the leopard frog, Rana pipiens. Microsc Res Tech 54:229–245

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Eriksson L, Yamamoto Y, Joensen H, Onimaru H, Lindahl S (2001) Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats. Anesthesiology 95:740–749

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, Köllros J (1946) Stages in the normal development of Rana pipiens larvae. Anat Rec 94:7–24

    Article  Google Scholar 

  • Taylor B, Harris M, Leiter J, Gdovin M (2003) Ontogeny of central CO2 chemoreception: chemosensitivity in the ventral medulla of developing bullfrogs. Am J Physiol Regul Integr Comp Physiol 285:R1461–R1472

    PubMed  CAS  Google Scholar 

  • Telgkamp P, Cao Y, Basbaum A, Ramirez J (2002) Long-term deprivation of substance P in PPT-A mutant mice alters the anoxic response of the isolated respiratory network. J Neurophysiol 88:206–213

    PubMed  CAS  Google Scholar 

  • Torgerson C, Gdovin M, Remmers J (1997) Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana. J Exp Biol 200:2063–2072

    PubMed  Google Scholar 

  • Vasilakos K, Wilson R, Kimura N, Remmers J (2005) Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats. J Neurobiol 62:369–385

    Article  PubMed  Google Scholar 

  • Wang H, Germanson T, Guyenet P (2002) Depressor and tachypneic responses to chemical stimulation of the ventral respiratory group are reduced by ablation of neurokinin-1 receptor-expressing neurons. J Neurosci 22:3755–3764

    PubMed  CAS  Google Scholar 

  • West N, Topor Z, van Vliet B (1987) Hypoxemic threshold for lung ventilation in the toad. Respir Physiol 70:377–390

    PubMed  CAS  Google Scholar 

  • Weyne J, Leuven F, Kazemi H, Leusen I (1978) Selected brain amino acids and ammonium during chronic hypercapnia in conscious rats. J Appl Physiol 44:333–339

    PubMed  CAS  Google Scholar 

  • Wilson R, Vasilakos K, Harris M, Straus C, Remmers J (2002) Evidence that ventilatory rhythmogenesis in the frog involves two distinct neuronal oscillators. J Physiol 540:557–570

    Article  PubMed  CAS  Google Scholar 

  • Wilson R, Vasilakos K, Remmers J (2006) Phylogeny of vertebrate respiratory rhythm generators: the oscillator homology hypothesis. Resp Physiol and Neurobiol 154:47–60

    Article  Google Scholar 

  • Wong-Riley M, Liu Q (2005) Neurochemical development of brain stem nuclei involved in the control of respiration. Resp Physiol and Neurobiol 149:83–98

    Article  CAS  Google Scholar 

  • Yamamoto Y, Onimaru H, Homma I (1992) Effect of substance P on respiratory rhythm and pre-inspiratory neurons in the ventrolateral structure of rostral medulla oblongata: an in vivo study. Brain Res 599:272–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH-NINDS 2U54NS041069-06AI. Protocols used in this study follow the institutional animal care and use committee (IACUC) guidelines and adhere to local and national ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Taylor.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, B.L., Brundage, C.M., Harris, M.B. et al. Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and μ-opioid receptors. J Comp Physiol B 179, 579–592 (2009). https://doi.org/10.1007/s00360-009-0339-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0339-3

Keywords

Navigation