Advertisement

Journal of Comparative Physiology B

, Volume 178, Issue 1, pp 93–100 | Cite as

Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species

  • T. Smith
  • D. A. Wharton
  • C. J. Marshall
Original Paper

Abstract

Panagrolaimus davidi is an Antarctic nematode with very high levels of cold tolerance. Its survival was compared with that of some other nematodes (P. rigidus, Rhabditophanes sp., Steinernema carpocapsae, Panagrellus redivivus and Ditylenchus dipsaci) in both unacclimated samples and those acclimated at 5°C. Levels of recrystallization inhibition in homogenates were also compared, using the splat-cooling assay. The survival of P. davidi after the freezing of samples was notably higher than that of the other species tested, suggesting that its survival ability is atypical compared to other nematodes. In general, acclimation improved survival. Levels of recrystallization inhibition were not associated with survival but such a relationship may exist for those species that are freezing tolerant.

Keywords

Freeze tolerance Cryoprotective dehydration Recrystallization inhibition 

Abbreviations

ATW

Artificial tap water

RMP

Relative medium potency

S50

50% Survival temperature

Tmin

Minimum temperature

Notes

Acknowledgments

We would like to thank Brian Niven for advice on probit analysis and the following for the supply of nematodes and/or assistance: D. dipsaci, Sharyn Taylor (SARDI, Adelaide) material for our initial infections; P. davidi, Antarctica NZ for supporting our Antarctic studies; S. carpocapsae, Tracey Nelson and Trevor Jackson (CASC, Lincoln); Rhabditophanes sp., Paul De Ley, Manuel Mundo-Ocampo and Jim Baldwin (UCLA Riverside) and for other species supplied but not used in this study; P. rigidus, Theresa Stiernagle (Caenorhabditis Genetics Center, funded by the NIH NCRR). DAW would like to thank Rick Lee Jr., Juanita Constible, Michael Elnitsky and Marcia Lee for their help during the part of this study conducted during his study leave at Rick Lee Jr’s laboratory. This study was made possible by a University of Otago Research Grant and by a Fullbright NZ Travel Award to DAW and complies with the laws regarding animal experimentation in New Zealand.

References

  1. Andrassy I (1998) Nematodes in the sixth continent. J Nematode Morphol System 1:107–186Google Scholar
  2. Behm CA (1997) The role of trehalose in the physiology of nematodes. Int J Parasitol 27:215–229PubMedCrossRefGoogle Scholar
  3. Brown IM, Gaugler R (1996) Cold tolerance of steinernematid and heterorhabditid nematodes. J Therm Biol 21:115–121CrossRefGoogle Scholar
  4. Brown IM, Gaugler R (1998) Survival of steinernematid nematodes exposed to freezing. J Therm Biol 23:75–80CrossRefGoogle Scholar
  5. Brown IM, Lovett BJ, Grewal PS, Gaugler R (2002) Latent infection: a low temperature survival strategy in steinernematid nematodes. J Therm Biol 27:531–539CrossRefGoogle Scholar
  6. Brown IM, Wharton DA, Millar RB (2005) The influence of temperature on the life history of the Antarctic nematode Panagrolaimus davidi. Nematology 6:883–890CrossRefGoogle Scholar
  7. Chen LB, Devries AL, Cheng CHC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816PubMedCrossRefGoogle Scholar
  8. Curcic BPM, Sudhaus W, Dimitrijevic RN, Tomic VT, Curcic SB (2004) Phoresy of Rhabditophanes schneideri (Butschli) (Rhabditida: Alloionematidae) on pseudoscorpions (Arachnida: Pseudoscorpiones). Nematology 6:313–317CrossRefGoogle Scholar
  9. De Ley P, Mundo-Ocampo M (2004) Cultivation of nematodes. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1: nematode morphology, physiology and ecology. CABI Publishing, Wallingford, pp 541–619Google Scholar
  10. Dorris M, Viney ME, Blaxter ML (2002) Molecular phylogenetic analysis of the genus Strongyloides and related nematodes. Int J Parasitol 32:1507–1517PubMedCrossRefGoogle Scholar
  11. Forge TA, MacGuidwin AE (1992) Effects of water potential and temperature on survival of the nematode Meloidogyne hapla in frozen soil. Can J Zool 70:1553–1560CrossRefGoogle Scholar
  12. Franks F, Mathias SF, Hatley RH (1990) Water, temperature and life. Philos Trans R Soc Lond B 326:517–533CrossRefGoogle Scholar
  13. Greenaway P (1970) Sodium regulation in the freshwater mollusc Limnaea stagnalis (L) (Gastropoda, Pulmonata). J Exp Biol 53:147–163PubMedGoogle Scholar
  14. Holmstrup M, Westh P (1994) Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. J Comp Physiol B 164:312–315CrossRefGoogle Scholar
  15. Holmstrup M, Bayley M, Ramløv H (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc Natl Acad Sci USA 99:5716–5720PubMedCrossRefGoogle Scholar
  16. Hominick WM (2002) Biogeography. In: Gaugler R (ed) Entomopathogenic nematology. CRC, Boca Raton, pp 115–144Google Scholar
  17. Hooper DJ (1986) Extraction of free-living stages from soil. In: Southey JF (ed) Laboratory methods for work with plant and soil nematodes. HMSO, London, pp 5–30Google Scholar
  18. Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallisation: an assessment technique. Cryobiology 25:55–60PubMedCrossRefGoogle Scholar
  19. Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34PubMedCrossRefGoogle Scholar
  20. Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248CrossRefGoogle Scholar
  21. Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperatures. Chapman & Hall, London, pp 17–46Google Scholar
  22. Lee RE, McGrath JJ, Morason RT, Taddeo RM (1993) Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat body cells of the freeze-tolerant gall fly Eurosta solidaginis. J Ins Physiol 39:445–450CrossRefGoogle Scholar
  23. Lees E (1953) An investigation into the method of dispersal of Pangrellus silusiae, with particular reference to its desiccation resistance. J Helminthol 27:95–103CrossRefGoogle Scholar
  24. Lewis EE, Shapiro-Ilan DI (2002) Host cadavers protect entomopathogenic nematodes during freezing. J Invertebr Pathol 81:25–32PubMedCrossRefGoogle Scholar
  25. Lewis EE, Gaugler R, Harrison R (1993) Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can J Zool 71:765–769Google Scholar
  26. Mabbett K, Wharton DA (1986) Cold tolerance and acclimation in the free-living nematode, Panagrellus redivivus. Revue Nématol 9:167–170Google Scholar
  27. Moody EH, Lownsbery BF, Ahmed JH (1973) Culture of the root-lesion nematode Pratylenchus vulnus on carrot discs. J Nematol 5:225–226PubMedGoogle Scholar
  28. Norusis MJ (1999) SPSS regression models 10.0. SPSS Inc, ChicagoGoogle Scholar
  29. Qiu LH, Bedding R (1999) Low temperature induced cryoprotectant synthesis by the infective juveniles of Steinernema carpocapsae: biological significance and mechanisms involved. Cryo Letters 20:393–404Google Scholar
  30. Ramløv H, Wharton DA, Wilson PW (1996) Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera, Stenopelmatidae). Cryobiology 33:607–613PubMedCrossRefGoogle Scholar
  31. Rosinski J, Langer G, Nagamoto CT, Banyard MC, Parungo FP (1976) Chemical composition of surfaces of natural ice-forming nuclei. J Atmos Res 10:201–210Google Scholar
  32. Schmiege DC (1963) The feasibility of using a Neoaplectanid nematode for control of some forest insect pests. J Econ Entomol 56:427–431Google Scholar
  33. Shannon AJ, Browne JA, Boyd J, Fitzpatrick DA, Burnell AM (2005) The anhydrobiotic potential and molecular phylogenetics of species and strains of Panagrolaimus (Nematoda, Panagrolaimidae). J Exp Biol 208:2433–2445PubMedCrossRefGoogle Scholar
  34. Stiernagle T (1999) Maintenance of C. elegans. In: Hope IA (ed) C. elegans: a practical approach. Oxford University Press, Oxford, pp 51–67Google Scholar
  35. Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68:27–84PubMedGoogle Scholar
  36. Sturhan D, Brzeski MW (1991) Stem and bulb nematodes, Ditylenchus spp. In: Nickle WR (ed) Manual of agricultural nematology. Marcel Dekker, New York, pp 423–464Google Scholar
  37. Subbotin SA, Madani M, Krall E, Sturhan D, Moens M (2005) Molecular diagnostics, taxonomy, and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathol 95:1308–1315CrossRefGoogle Scholar
  38. Wharton DA (1995) Cold tolerance strategies in nematodes. Biol Rev 70:161–185Google Scholar
  39. Wharton DA (1996) Water loss and morphological changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci. J Exp Biol 199:1085–1093PubMedGoogle Scholar
  40. Wharton DA (2002a) Life at the limits: organisms in extreme environments. Cambridge University Press, CambridgeGoogle Scholar
  41. Wharton DA (2002b) Survival strategies. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 389–411Google Scholar
  42. Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B 173:621–628PubMedCrossRefGoogle Scholar
  43. Wharton DA, Block W (1993) Freezing tolerance of some Antarctic nematodes. Func Ecol 7:578–584CrossRefGoogle Scholar
  44. Wharton DA, Brown IM (1991) Cold tolerance mechanisms of the Antarctic nematode Panagrolaimus davidi. J Exp Biol 155:629–641Google Scholar
  45. Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387PubMedGoogle Scholar
  46. Wharton DA, Surrey MR (1994) Cold tolerance mechanisms of the infective larvae of the insect parasitic nematode, Heterorhabditis zealandica Poinar. Cryo Letters 25:749–752Google Scholar
  47. Wharton DA, Young SR, Barrett J (1984) Cold tolerance in nematodes. J Comp Physiol B 154:73–77CrossRefGoogle Scholar
  48. Wharton DA, Judge KF, Worland MR (2000) Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi. J Comp Physiol B 170:321–327PubMedCrossRefGoogle Scholar
  49. Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. J Exp Biol 206:215–221PubMedCrossRefGoogle Scholar
  50. Wharton DA, Mutch JS, Wilson PW, Marshall CJ, Lim M (2004) A simple ice nucleation spectrometer. Cryo Letters 25:335–340PubMedGoogle Scholar
  51. Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramløv H (2005a) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207PubMedCrossRefGoogle Scholar
  52. Wharton DA, Downes MF, Goodall G, Marshall CJ (2005b) Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Cryobiology 50:21–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations