Journal of Comparative Physiology B

, Volume 177, Issue 5, pp 529–534 | Cite as

Central ventilatory control in the South American lungfish, Lepidosiren paradoxa: contributions of pH and CO2

  • J. Amin-Naves
  • H. Giusti
  • A. Hoffmann
  • M. L. Glass
Original Paper


Lungfish represent a probable sister group to the land vertebrates. Lungfish and tetrapods share features of respiratory control, including central, peripheral and intrapulmonary CO2 receptors. We investigated whether or not central chemoreceptors in the lungfish, L. paradoxa, are stimulated by CO2 and/or pH. Ventilation was measured by pneumotachography for diving animals. The fourth cerebral ventricle was equipped with two catheters for superfusion. Initially, two control groups were compared: (1) catheterized animals with no superfusion and (2) animals superfused with mock CSF solutions at pH = 7.45; PCO2 = 21 mmHg. The two groups had virtually the same ventilation of about 40 ml BTPS kg−1 h−1 (P > 0.05). Next, PCO2 was increased from 21 to 42 mmHg, while pHCSF was kept at 7.45, which increased ventilation from 40 to 75 ml BTPS kg−1 h−1. Conversely, a decrease of pHCSF from 7.45 to 7.20 (PCO2 = 21 mmHg) increased ventilation to 111 ml BTPS kg−1 h−1. Further decreases of pHCSF had little effect on ventilation, and the combination of pHCSF = 7.10 and PCO2 = 42 mmHg reduced ventilation to 63 ml BTPS kg−1 h−1.


Lungfish Lepidosiren paradoxa Central chemoreceptors Specific stimuli Acid–base regulation Pulmonary ventilation Ventilatory drive Hypercarbia Central superfusion 



Our research was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo); Proc 98/06731-5, CNPq (Conselho Nacional de Desenvolvimento Científico o Tecnológico); Proc. 520769/93-7, FAEPA (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da FMRP-USP). We acknowledge the skilful technical assistance from Mrs. A. S.F. Pereira.


  1. Amin-Naves J, Giusti H, Glass ML (2004) Effects of the acute temperature changes on aerial and aquatic gas exchange, pulmonary ventilation and blood gas status in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol A 138:133–139CrossRefGoogle Scholar
  2. Amin-Naves J, Giusti H, Hoffmann A, Glass ML (2007) Components to the acid-base related ventilatory drives in the South American lungfish Lepidosiren paradoxa. Respir Physiol Neurobiol 155(1):35–40PubMedCrossRefGoogle Scholar
  3. Bernard DG, Li A, Nattie EE (1996) Evidence for central chemoreceptors in the midline raphe. J Appl Physiol 80(1):108–115PubMedGoogle Scholar
  4. Branco LGS, Glass ML (1995) Ventilatory responses to carboxihaemoglobinaemia and hypoxic hypoxia in Bufo paracnemis. J Exp Biol 198(6):1417–1421PubMedGoogle Scholar
  5. Branco LG, Glass ML, Hoffmann A (1991) Central chemoreceptor drive to breathing in unanesthetized toads, Bufo paracnemis. Respir Physiol 87:195–204CrossRefGoogle Scholar
  6. Branco LG, Pörtner HO, Wood SC (1993) Interaction between temperature and hypoxia in the alligator. Am J Physiol 265(6Pt2):R1339–R134PubMedGoogle Scholar
  7. Carroll RL (1988) Vertebrate paleontology and evolution. W. H. Freeman and Co, New YorkGoogle Scholar
  8. DeLaney RG, Laurent P, Galante R, Pack AI, Fishman AP (1983) Pulmonary Mechanoreceptors in the Dipnoi Lungfish Protopterus and Lepidosiren. Am J Physiol 244:R418–R428PubMedGoogle Scholar
  9. Eldridge FL. Kiley JP, Millhorn DE (1985) Respiratory response to medullary hydrogen ion changes: different effets of respiraratory and metabolin acidosis. J Physiol (Lond) 358:285–297Google Scholar
  10. Glass ML, Boutilier RG, Heisler N (1983) Gas ventilatory control of arterial PO2 in the turtle Chrysemys picta bellii: effects of temperature and hypoxia. J Comp Physiol 151:145–153Google Scholar
  11. Guyenet PG, Stornette RL, Baylis DA, Mulkey DK (2005) Retrotrrapezooid nucleus: a litmus test for the identification of central chemoreceptors. Exp Physiol 90(3):247–253PubMedCrossRefGoogle Scholar
  12. Harada Y, Wang YZ, Kuno M (1985) Central chemosensitivity to H+ and CO2 in respiratory center in vitro. Brain Res 333(2):336–339PubMedCrossRefGoogle Scholar
  13. Heisler N, Forcht G, Ultsch GR, Anderson JF (1982) Acid–base regulation to environmental hypercapnia in two aquatic salamanders, Siren lacertina and Amphiuma means. Respir Physiol 49:141–158PubMedCrossRefGoogle Scholar
  14. Hitzig MS, Nattie EE (1982) Acid-base stress and central chemical control of ventilation in turtles. J Appl Physiol 53(6):1365–1370PubMedGoogle Scholar
  15. Hlastala MP, Berger AJ (1996) Physiology of respiration. Oxford University Press New York, OxfordGoogle Scholar
  16. Lahiri S, Forster RE 2nd (2003) CO2/H+-sensing: perpgeral and central chemoreception. Int J Cell Biol 35(10):1413–1435CrossRefGoogle Scholar
  17. Jones HC, Taylor CM (1984) Absorption of the cerebrospinal fluid and intracranial compliance in an amphibian, Rana pipiens. J Physiol 353:405–417PubMedGoogle Scholar
  18. Kinkead R, Milsom WK (1997) Role of pulmonary stretch receptor feedback in control of episodic breathing in the bullfrog. Am J Physiol 272(2Pt2):R497–508PubMedGoogle Scholar
  19. Lahiri S, Szidon JP, Fishman AP (1970) Potencial respiratory and circulatory adjustments to hypoxia in the African lungfish. Fed Proc 29(3):1141–1148PubMedGoogle Scholar
  20. Loeschcke HH, Koepchen HP, Gertz KH (1958) Über den Einfluss von Wasserstoffionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflügers Arch 266:569–585PubMedCrossRefGoogle Scholar
  21. Milsom WK (2002) Phylogeny of CO2/H+ chemoreception in vertebrates. Respir Physiol Neurobiol 131(1–2):29–41PubMedCrossRefGoogle Scholar
  22. Milsom WK, Abe AS, Andrade DV, Tattersall GJ (2004) Evolutionary trends in airway CO2/H+ chemoreception. Respir Physiol Neurobiol 144(2–3):191–202 (Review)Google Scholar
  23. Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons in the central nervous system. J Appl Physiol 96:367–374PubMedCrossRefGoogle Scholar
  24. Nattie E (1999) CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59:299–331PubMedCrossRefGoogle Scholar
  25. Nieuwenhuys R (1998) Lungfishes. In: Nieuwenhuys R, Tem Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 2. Springer, Heidelberg, pp 939–1006Google Scholar
  26. Noronha-de-Souza CR, Bícego KC, Michel G, Glass, ML, Branco, LGS, Gargaglioni, LH (2007) Locus coeruleus is a chemosensitive site in toads. Am J Physiol Regul Comp Physiol (in press)Google Scholar
  27. Pack AI, Galante RJ, Fishman AP (1990) Control of interbreath interval in the African lungfish. Am J Physiol 259(1Pt2):R139–46PubMedGoogle Scholar
  28. Pack AI, Galante RJ, Fishman AP (1992) Role of lung inflation in control of air breath duration in African lungfish (Protopterus annectens). Am J Physiol 262(5Pt2):R879–84PubMedGoogle Scholar
  29. Perry SF, Wilson RJ, Straus C, Harris MB, Remmers JE (2001) Which came first, the lung or the breath? Comp Biochem Physiol A Mol Integr Physiol 129(1):37–47 (Review)Google Scholar
  30. Prabhakar NR (2006) O2- sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters. Exp Physiol 91(1):17–23PubMedCrossRefGoogle Scholar
  31. Rives JE, Bernard DG (2001) Alpha2 adrenergic receptors and central control of breathing in the cane toad, Bufo marinus. Respir Physiol 125(3):213–223PubMedCrossRefGoogle Scholar
  32. Sanchez AP, Glass ML (2001) Effects of environmental hypercapnia on pulmonary ventilation of the South American lungfish. J Fish Biol 58:1181–1189CrossRefGoogle Scholar
  33. Sanchez AP, Hoffman A, Rantin FT, Glass ML (2001a) The relationship between pH of the cerebro-spinal fluid and pulmonary ventilation of the South American lungfish, Lepidosiren paradoxa. J Exp Zool 290:421–425CrossRefGoogle Scholar
  34. Sanchez AP, Soncini R, Wang T, Koldkjær P, Taylor EW, Glass ML (2001b) The differential cardio-respiratory responses to ambient hypoxia and systemic hypoxaemia in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol 130(4):677–687CrossRefGoogle Scholar
  35. Sanchez AP, Giusti H, Bassi M, Glass ML (2005) Acid-base regulation in the South American lungfish, Lepidosiren paradoxa: effects of prolonged hypercarbia on blood gases and pulmonary ventilation. Physiol Biochem Zool 78(6):908–915PubMedCrossRefGoogle Scholar
  36. Schläfke ME, Pokorski M, See WR, Prill RK, Loeschcke HH (1975) Chemosensitive neurons on the ventral medulla surface. Bull Physiopathol Respir (Nancy) 11(2):277–284Google Scholar
  37. Shams H (1985) Differential effects of CO2 and H+ as central stimuli of respiration in the cat. J Appl Physiol 58(2):357–364PubMedGoogle Scholar
  38. Smatresk NJ, Smits AW (1991) Effects of central and peripheral chemoreceptor stimulation on ventilation in the marine toad, Bufo marinus. Respir Physiol 83(2):223–238PubMedCrossRefGoogle Scholar
  39. Striedter GF (2005) Principles of Brain Evolution. Sinauer Associates Inc. Publishers, SutherlandGoogle Scholar
  40. Taylor BE, Harris MB, Leiter JC, Gdovin MJ (2003) Ontogeny of central CO2 chemoreception: chemosensisvity in the ventral medulla of developing bullfrogs. Am J Physiol Regul Integr Comp Physiol 285(6):R1461–1472PubMedGoogle Scholar
  41. Tohyama Y, Ichimiya T, Kasama-Yoshida H, Cao Y, Hasegawa M, Kojima H, Tamai Y, Kurihara T (2000) Phylogenetic relation of lungfish indicated by the amino acid sequence of myelin DM20. Brain Res Mol Brain Res 80(2):256–259PubMedCrossRefGoogle Scholar
  42. Vitalis TZ, Shelton G (1990) Breathing in Rana pipiens: the mechanism of ventilation. J ExpBiol 154:537–556Google Scholar
  43. Wang T, Branco LG, Glass ML (1994) Ventilatory responses to hypoxia in the toad Bufo paracnemis before and after a decrease in haemoglobin oxygen-carrying capacity. J Exp Biol 186:1–8PubMedGoogle Scholar
  44. Zardoya R, Cao Y, Hasegawa M, Meyer A (1998) Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Mol Biol Evol 15(5):506–517PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Amin-Naves
    • 1
  • H. Giusti
    • 1
  • A. Hoffmann
    • 1
  • M. L. Glass
    • 1
  1. 1.Department of Physiology, Faculty of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations