Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis

Original Paper


Earlier work found cuttlefish (Sepia officinalis) ventilatory muscle tissue to progressively switch to an anaerobic mode of energy production at critical temperatures (Tc) of 7.0 and 26.8°C. These findings suggested that oxygen availability limits thermal tolerance. The present study was designed to elucidate whether it is the ventilatory apparatus that sets critical temperature thresholds during acute thermal stress. Routine metabolic rate (rmr) rose exponentially between 11 and 23°C, while below (8°C) and above (26°C) this temperature range, rmr was significantly depressed. Ventilation frequency (fV) and mean mantle cavity pressure (MMP) followed an exponential relationship within the entire investigated temperature range (8–26°C). Oxygen extraction from the ventilatory current (EO2) decreased in a sigmoidal fashion with temperature, falling from > 90% at 8°C to 32% at 26°C. Consequently, ventilatory minute volume (MVV) increased by a factor of 20 from 7 to 150% body weight min−1 in the same temperature interval. Increases in MMP and MVV resulted in ventilatory muscle power output (Pout) increasing by a factor of > 80 from 0.03 to 2.4 mW kg−1 animal. Nonetheless, costs for ventilatory mechanics remain below 1.5% rmr in the natural thermal window of the population (English Channel, 9–17°C), owing to very low MMPs of < 0.05 kPa driving the ventilatory stream, and may maximally rise to 8.6% rmr at 26°C. Model calculations suggest that the ventilatory system can maintain high arterial PO2 values of > 14 kPa over the entire temperature interval. We therefore conclude that the cuttlefish ventilation system is probably not limiting oxygen transfer during acute thermal stress. Depression of rmr, well before critical temperatures are being reached, is likely caused by circulatory capacity limitations and not by fatigue of ventilatory muscle fibres.


Cephalopoda Ventilation Mantle cavity pressure Oxygen consumption Cuttlefish 


  1. Alexander RMcN (1970) Functional design in fishes. Hutchinson, London, 160 ppGoogle Scholar
  2. Bartol IK (2001) Role of aerobic and anaerobic circular mantle muscle fibers in swimming squid: electromyography. Biol Bull 200:59–66PubMedCrossRefGoogle Scholar
  3. Bartol IK, Mann R, Patterson MR (2001) Aerobic respiratory costs of swimming in the negatively buoyant brief squid Lolliguncula brevis. J Exp Biol 204:3639–3653PubMedGoogle Scholar
  4. Boal JG, Golden DK (1999) Distance chemoreception in the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). J Exp Mar Biol Ecol 235:307–317CrossRefGoogle Scholar
  5. Boal JG, Ni JN (1996) Ventilation rate of cuttlefish, Sepia officinalis, in response to visual stimuli. Veliger 38(4):342–347Google Scholar
  6. Bone Q, Brown ER, Travers G (1994a) On the respiratory flow in the cuttlefish Sepia officinalis. J Exp Biol 194:153–165Google Scholar
  7. Bone Q, Brown ER, Usher M (1994b) The structure and physiology of cephalopod muscle fibres. In: Abbot NJ, Williamson R, Maddock L (eds) Cephalopod neurobiology. Oxford University Press, Oxford, pp 301–329Google Scholar
  8. Boucaud-Camou E, Boismery J (1991) The migrations of the cuttlefish (Sepia officinalis) in the English Channel. In: Boucaud-Camou E (ed) La Seiche, 1st international symposium on the cuttlefish Sepia. Centre of publications, Universite de Caen, pp 179–189Google Scholar
  9. Burton RF (2002) Temperature and acid–base balance in ectothermic vertebrates: the imidazole alphastat hypothesis and beyond. J Exp Biol 205:3587–3600PubMedGoogle Scholar
  10. Cameron JN, Cech JR (1970) Notes on the energy cost of gill ventilation in teleosts. Comp Biochem Physiol 34:447–455CrossRefGoogle Scholar
  11. Curtin NA, Woledge RC, Bone Q (2000) Energy storage by passive elastic structures in the mantle of Sepia officinalis. J Exp Biol 203:869–878PubMedGoogle Scholar
  12. Denton EJ, Gilpin-Brown JB (1961) The buoyancy of the cuttlefish, Sepia officinalis (L.). J Mar Biol Assoc UK 41:319–342CrossRefGoogle Scholar
  13. Eno CN (1994) The morphometrics of cephalopod gills. J Mar Biol Assoc UK 74:687–706Google Scholar
  14. Farrell AP (2002) Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes. Comp Biochem Physiol A 132:797–810CrossRefGoogle Scholar
  15. Gilmour KM (2001) The CO2/pH ventilatory drive in fish. Comp Biochem Physiol A 130:219–240CrossRefGoogle Scholar
  16. Heath AG, Hughes GM (1973) Cardiovascular and respiratory changes during heat stress in the rainbow trout (Salmo gairdneri). J Exp Biol 59:323–338PubMedGoogle Scholar
  17. Houlihan DF, Innes AJ, Wells MJ, Wells J (1982) Oxygen consumption and blood gases of Octopus vulgaris in hypoxic conditions. J Comp Physiol 148:35–40Google Scholar
  18. Houlihan DF, Agnisola C, Hamilton NM, Genoino TI (1987) Oxygen consumption of the isolated heart of octopus: effects of power output and hypoxia. J Exp Biol 131:137–157Google Scholar
  19. Howell BJ, Gilbert DL (1976) pH–temperature dependence of the hemolymph of the squid, Loligo pealei. Comp Biochem Physiol A 55:287–289PubMedCrossRefGoogle Scholar
  20. Hughes GM (1973) Respiratory responses to hypoxia in fish. Am Zool 13:475–489Google Scholar
  21. Jobling M (1982) A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J Fish Biol 20:501–516CrossRefGoogle Scholar
  22. Johansen K, Brix O, Kornerup S, Lykkeboe G (1982a) Factors affecting O2-uptake in the cuttlefish, Sepia officinalis. J Mar Biol Assoc UK 62:187–191CrossRefGoogle Scholar
  23. Johansen K, Beix O, Lykkeboe G (1982b) Blood gas transport in the cephalopod, Sepia officinalis. J Exp Biol 99:331–338Google Scholar
  24. Jørgensen CB, Riisgård HU (1988) Gill pump characteristics of the soft clam Mya arenaria. Mar Biol 99:107–109CrossRefGoogle Scholar
  25. Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod, Gadus morhua L. studied by magnetic resonance imaging (MRI) and on-line venous oxygen monitoring. Am J Physiol 287:R902–R910Google Scholar
  26. Madan JJ, Wells MJ (1996) Cutaneous respiration in Octopus vulgaris. J Exp Biol 199:2477–2483Google Scholar
  27. Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol 283:R1254–R1262Google Scholar
  28. Melzner F, Bock C, Pörtner HO (2006) Critical temperatures in the cephalopod Sepia officinalis investigated using in vivo 31P NMR spectroscopy. J Exp Biol 209:891–906PubMedCrossRefGoogle Scholar
  29. Messenger JB, Nixon M, Ryan KP (1985) Magnesiumchloride as an anaesthetic for cephalopods. Comp Biochem Physiol C 82:203–205PubMedCrossRefGoogle Scholar
  30. Milligan BJ, Curtin NA, Bone Q (1997) Contractile properties of obliquely striated muscle from the mantle of squid (Alloteuthis subulata) and cuttlefish (Sepia officinalis). J Exp Biol 200:2425–2436PubMedGoogle Scholar
  31. Mislin H (1966) Über die Beziehungen zwischen Atmung und Kreislauf bei Cephalopoden (Sepia officinalis L.). Synchronregistrierung von Elektrokardiogramm (Ekg) und Atembewegungen am schwimmenden Tier. Verh Dtsch Zool Ges 175–181Google Scholar
  32. O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605Google Scholar
  33. O’Dor RK, Webber DM (1991) Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. J Exp Biol 160:93–112Google Scholar
  34. O’Dor RK, Wells MJ (1987) Energy and nutrient flow. In: Boyle PR (ed) Cephalopod life cycles. Comparative reviews, vol 2. Academic, London, pp 109–133Google Scholar
  35. Packard A (1972) Cephalopods and fish: limits of convergence. Biol Rev 47:241–307CrossRefGoogle Scholar
  36. Perry SF, McKendry JE (2001) The relative roles of external and internal CO2 versus H+ in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia. J Exp Biol 204:3963–3971PubMedGoogle Scholar
  37. Piiper J (1998) Branchial gas transfer models. Comp Biochem Physiol A 119:125–130CrossRefGoogle Scholar
  38. Pörtner HO (2002) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761Google Scholar
  39. Pörtner HO, Mark FC, Bock C (2004) Oxygen limited thermal tolerance in fish? Answers obtained by nuclear magnetic resonance techniques. Respir Physiol Neurobiol 141:243–260PubMedCrossRefGoogle Scholar
  40. Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid–base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14:219–236PubMedCrossRefGoogle Scholar
  41. Sartoris FJ, Bock C, Serendero I, Lannig G, Pörtner HO (2003) Temperature-dependent changes in energy metabolism, intracellular pH and blood oxygen tension in the Atlantic cod. J Fish Biol 62:1239–1253CrossRefGoogle Scholar
  42. Schumann D, Piiper J (1966) Der Sauerstoffbedarf der Atmung bei Fischen nach Messungen an der narkotisierten Schleie (Tinca tinca). Pflügers Archiv Eur J Physiol 288 (1):15–26CrossRefGoogle Scholar
  43. Seibel BA, Thuesen EV, Childress JJ, Gorodezky LA (1997) Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol Bull 192:262–278CrossRefGoogle Scholar
  44. Steffensen JF, Lomholt JP, Johansen K (1982) Gill ventilation and O2 extraction during graded hypoxia in two ecologically distinct species of flatfish, the flounder (Platichthys flesus) and the plaice (Pleuronectes platessa). Environ Biol Fish 2:157–163CrossRefGoogle Scholar
  45. Syme DA (1994) The efficiency of frog ventricular muscle. J Exp Biol 197:143–164PubMedGoogle Scholar
  46. Terbeck S (2003) Der Einfluss von Kalium auf die Aktivität von Sepia officinalis. Diploma thesis, University of Münster, 61 ppGoogle Scholar
  47. Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton, 467 ppGoogle Scholar
  48. Webber DM, O’Dor RK (1986) Monitoring the metabolic rate and activity of free-swimming squid with telemetered jet pressure. J Exp Biol 126:202–224Google Scholar
  49. Wells MJ (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824CrossRefGoogle Scholar
  50. Wells MJ, Clarke A (1996) The costs of living and reproducing for an individual cephalopod. Philos Trans R Soc Lond B 351:1083–1104CrossRefGoogle Scholar
  51. Wells MJ, Wells J (1982) Ventilatory currents in the mantle of cephalopods. J Exp Biol 99:315–330Google Scholar
  52. Wells MJ, Wells J (1983) The circulatory response to acute hypoxia in Octopus. J Exp Biol 104:59–71Google Scholar
  53. Wells MJ, Wells J (1985a) Ventilation frequencies and stroke volumes in acute hypoxia in Octopus. J Exp Biol 118:445–448Google Scholar
  54. Wells MJ, Wells J (1985b) Ventilation and oxygen uptake by Nautilus. J Exp Biol 118:297–312Google Scholar
  55. Wells MJ, Wells J (1986) Blood flow in acute hypoxia in a cephalopod. J Exp Biol 122:345–353Google Scholar
  56. Wells MJ, Wells J (1991) Is Sepia really an octopus? In: Boucaud-Camou E (ed) La Seiche, 1st international symposium on the cuttlefish Sepia. Centre de publications, Universite de Caen, pp 77–92Google Scholar
  57. Wells MJ, Wells J (1995) The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in octopus. J Exp Biol 198:1717–1727PubMedGoogle Scholar
  58. Wells MJ, Hanlon RT, Lee PG, DiMarco FP (1988) Respiratory and cardiac performance in Lolliguncula brevis (Cephalopoda, Myopsida): the effects of activity, temperature and hypoxia. J Exp Biol 138:17–36Google Scholar
  59. Zielinski S, Sartoris FJ, Pörtner HO (2001) Temperature effects on hemocyanin oxygen binding in an Antarctic cephalopod. Biol Bull 200:67–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Frank Melzner
    • 1
  • Christian Bock
    • 1
  • Hans O. Pörtner
    • 1
  1. 1.Alfred-Wegener-Institute for Marine and Polar ResearchBremerhavenGermany

Personalised recommendations