Journal of Comparative Physiology B

, Volume 174, Issue 7, pp 511–518 | Cite as

Respiration of individual honeybee larvae in relation to age and ambient temperature

  • Markus Petz
  • Anton Stabentheiner
  • Karl Crailsheim
Original Paper

Abstract

The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg−1 h−1 in 0.5-day-old larvae to 2.98±0.57 µl mg−1 h−1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg−1 h−1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg−1 h−1 CO2 at 18 °C, and 3.97±0.50 µl mg−1 h−1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.

Keywords

Apis Honeybee larva Respiration CO2 production Temperature 

Abbreviations

m

body mass

R

rate of development or respiration

TI

inflexion point of a logistic (sigmoid) curve

TL

lethal temperature

TO

temperature of optimum (maximum) development

Notes

Acknowledgements

We are greatly indebted to Stefan K. Hetz (Lehrstuhl für Tierphysiologie, Humboldt-Universität zu Berlin) for many tips and self-sacrificing technical help, and to E. Stabentheiner for measurements of air CO2 content in Graz. The research was supported by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung (FWF). The authors declare that the experiments performed in the production of this article comply with the current laws of the Republic of Austria.

References

  1. Allen MD (1959) Respiration rates of larvae of drone and worker honey bees, Apis mellifera. J Econ Entomol 52:399–402Google Scholar
  2. Bodenheimer FS (1937) Studies in animal populations. II. Seasonal population-trends of the honey-bee. Q Rev Biol 12:406–425CrossRefGoogle Scholar
  3. Büdel A (1955) Schwankungen der Lufttemperatur in der Wabengasse eines brütenden Bienenvolkes. Z Bienenforsch 3:88–92Google Scholar
  4. Bujok B, Kleinhenz M, Fuchs S, Tautz J (2002) Hot spots in the bee hive. Naturwissenschaften 89:299–301CrossRefPubMedGoogle Scholar
  5. Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifica. Z Vergl Physiol 43:305–335Google Scholar
  6. Fahrenholz L, Lamprecht I, Schricker B (1989) Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B 159:551–560Google Scholar
  7. Greenlee KJ, Harrison JF (2004) Development of respiratory function in the American locust Schistocerca americana I. Across-instar effects. J Exp Biol 207:497–508CrossRefPubMedGoogle Scholar
  8. Harbo JR, Bolten AB (1981) Development times of male and female eggs of the honey bee. Ann Entomol Soc Am 74:504–506Google Scholar
  9. Haydak MH (1970) Honey bee nutrition. Annu Rev Entomol 15:143–156CrossRefGoogle Scholar
  10. Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55Google Scholar
  11. Heinrich B (1993) The hot-blooded insects, strategies and mechanisms of thermoregulation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Hepburn HR (1986) Honeybees and wax: an experimental natural history. Springer, Berlin New YorkGoogle Scholar
  13. Hepburn HR, Armstrong E, Kurstjens SP (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S Afr J Sci 79:416–417Google Scholar
  14. Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36Google Scholar
  15. Hess WR (1926) Die Temperaturregulierung im Bienenvolk. Z Vergl Physiol 4:465–487Google Scholar
  16. Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253Google Scholar
  17. Kleinhenz M, Bujok B, Fuchs S, Tautz J (2003) Hot bees in empty broodnest cells: heating from within. J Exp Biol 206:4217–4231CrossRefPubMedGoogle Scholar
  18. Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol B 148:65–76Google Scholar
  19. Leonhard B, Crailsheim K (1999) Temperature dependency of the oxygen consumption by a thorax homogenate of worker honeybees (Hymenoptera: Apidae). Entomol Gen 24:31–36Google Scholar
  20. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36:391–432Google Scholar
  21. Mackasmiel LAM, Fell RD (2000) Respiration rates in eggs of the honey bee, Apis mellifera. J Apic Res 39:125–135Google Scholar
  22. Melampy RM, Willis ER (1939) Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.). Physiol Zool 12:302–311Google Scholar
  23. Moritz RFA, Southwick EE (1992) Bees as superorganisms. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Ratte HT (1984) Temperature and insect development. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin Heidelberg New York, pp 33–66Google Scholar
  25. Ritter W (1982) Experimenteller Beitrag zur Thermoregulation des Bienenvolks (Apis mellifera L.). Apidologie 13:169–195Google Scholar
  26. Ritter W, Koeniger N (1977) Influence of the brood on the thermoregulation of honeybee colonies. Proceedings of the 8th Congress of the IUSSI, Wageningen, pp 283–284Google Scholar
  27. Rothe U, Nachtigall W (1989) Flight of the honey bee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158:739–749Google Scholar
  28. Schmaranzer S, Stabentheiner A, Heran H (1987) Thermografie bei Bienen. Film C2046 of the ÖWF Wien, Österreichisches Bundesinstitut für den Wissenschaftlichen Film. Accompanying publication: Schmaranzer S, Stabentheiner A, Heran H (1988) Wiss Film 38/39:64–68Google Scholar
  29. Schmolz E, Lamprecht I (2000) Calorimetric investigations on activity states and development of holometabolous insects. Thermochim Acta 349:61–68CrossRefGoogle Scholar
  30. Schmolz E, Hoffmeister D, Lamprecht I (2002) Calorimetric investigations on metabolic rates and thermoregulation of sleeping honeybees (Apis mellifera carnica). Thermochim Acta 382:221–227CrossRefGoogle Scholar
  31. Seeley TD (1974) Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J Insect Physiol 20:2301–2305CrossRefPubMedGoogle Scholar
  32. Shuel RW, Dixon SE (1959) Studies in the mode of action of royal jelly in honeybee development II. Respiration of newly emerged larvae on various substrates. Can J Zool 37:803–813Google Scholar
  33. Stabe HA (1930) The rate of growth of worker, drone and queen larvae of the honeybee, Apis mellifera Linn. J Econ Entomol 23:447–453Google Scholar
  34. Stabentheiner A, Vollmann J, Kovac H, Crailsheim K (2003) Oxygen consumption and body temperature of active and resting honeybees. J Insect Physiol 49:881–889CrossRefGoogle Scholar
  35. Tautz J, Maier S, Groh C, Rössler W, Brockmann A (2003) Behavioral performance in adult honeybees is influenced by the temperature experienced during their pupal development. Proc Natl Acad Sci USA 100:7343–7347CrossRefPubMedGoogle Scholar
  36. Wang DI (1965) Growth rates of young queen and worker honeybee larvae. J Apic Res 4:3–6Google Scholar
  37. Wheeler GC, Wheeler J (1979) Larvae of the social hymenoptera. In: Hermann HR (ed) Social insects I. Academic Press, New York, pp 287–338Google Scholar
  38. Wieser W (1986) Bioenergetik: Energietransformationen bei Organismen. Thieme, StuttgartGoogle Scholar
  39. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Markus Petz
    • 1
  • Anton Stabentheiner
    • 1
  • Karl Crailsheim
    • 1
  1. 1.Institut für ZoologieUniversität GrazGrazAustria

Personalised recommendations