Journal of Comparative Physiology A

, Volume 205, Issue 5, pp 735–743 | Cite as

Color preference and spatial distribution of glaphyrid beetles suggest a key role in the maintenance of the color polymorphism in the peacock anemone (Anemone pavonina, Ranunculaceae) in Northern Greece

  • Martin Streinzer
  • Nicolas Roth
  • Hannes F. Paulus
  • Johannes SpaetheEmail author
Original Paper


In the Mediterranean region, a group of unrelated plant species share an unusual deep-red flower color and are pollinated by glaphyrid beetles. Some of these species possess different color morphs, but the mechanisms maintaining this color polymorphism are unknown. The peacock anemone, Anemone pavonina, is a color polymorphic species with red or purple flowers. We investigated the spatial distribution of its color morphs and its potential glaphyrid pollinators, Pygopleurus spp., along an elevational gradient on the southern slopes of Mount Olympus, Greece. We found a correlation between relative proportions of the two color morphs with both elevation and beetle abundance. At low elevations (< 1000 m a.s.l.), beetles were abundant and anemone populations comprised only red flowers. Above a steep transition zone with mixed-colored populations (c. 1000–1300 m) most flowers were purple and beetles were rare. Color-trapping experiments revealed a strong preference for red over other colors in beetles and colorimetric modeling suggests that a simple chromatic mechanism is sufficient to explain their color choices. We thus hypothesize that beetles select for red flowers and that with increasing elevation and decreasing beetle density, other flower visitors (e.g., bees) gain importance as pollinators and select for a different color.


Beetle pollination syndrome Color vision Elevational distribution Floral signal Red bowl-shaped flowers 



We thank K. Stejskal and N. Sommer for help in the field, and J. Plant for linguistic improvement of the manuscript.

Author contribution

MS, HFP and JS conceived the experimental concept. MS, NR and JS performed the experiments. MS and NR analyzed the data. MS, NR and JS wrote a first version of the manuscript. All authors discussed the results, commented on the paper and agreed to the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

359_2019_1360_MOESM1_ESM.docx (675 kb)
Supplementary material 1 (DOCX 671 kb)


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971. Akadémiai Kiadó, Budapest, pp 267–281Google Scholar
  2. Arista M, Talavera M, Berjano R, Ortiz PL (2013) Abiotic factors may explain the geographical distribution of flower colour morphs and the maintenance of colour polymorphism in the scarlet pimpernel. J Ecol 101:1613–1622. CrossRefGoogle Scholar
  3. Baraud J (1989) Revision du genre Pygopleurus MOTSCHULSKY (Coleoptera: scarabaeoidea: Glaphyridae). Ann Soc Entomol Fr 25:331–375Google Scholar
  4. Barth FG (1985) Insects and flowers. The biology of a partnership. Princeton University Press, PrincetonGoogle Scholar
  5. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. Google Scholar
  6. Boraiah G, Heimburger M (1964) Cytotaxonomic studies on new world Anemone (section Eriocephalus) with woody rootstocks. Can J Bot 42:891–922. CrossRefGoogle Scholar
  7. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178. CrossRefGoogle Scholar
  8. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510. CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. CrossRefGoogle Scholar
  10. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colors and the insect pollinators’ color vision systems. J Comp Physiol A 171:171–181. CrossRefGoogle Scholar
  11. Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Isr J Plant Sci 45:169–183. CrossRefGoogle Scholar
  12. Dafni A, Bernhardt P, Shmida A, Ivri Y, Greenbaum S, O’Toole CH, Losito L (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr J Bot 39:81–92Google Scholar
  13. Davis AR (1997) Pollen efficiency of insects. In: Shivanna KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 87–120CrossRefGoogle Scholar
  14. de Camargo MGG, Lunau K, Batalha MA, de Brito VLG, Morellato LPC (2018) How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. Google Scholar
  15. de Motschulsky VD (1859) Insectes des Indes Orientales, et de contrées analogues. Études Entomol 8:162–168Google Scholar
  16. Döring TF, Chittka L (2007) Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod Plant Interact 1:3–16. CrossRefGoogle Scholar
  17. Dudash MR, Hassler C, Stevens PM, Fenster CB (2011) Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. Am J Bot 98:275–282. CrossRefGoogle Scholar
  18. Dyer AG (2012) The mysterious cognitive abilities of bees: why models of visual processing need to consider experience and individual differences in animal performance. J Exp Biol 215:387–395. CrossRefGoogle Scholar
  19. Dyer AG, Chittka L (2004) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227. CrossRefGoogle Scholar
  20. Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627. CrossRefGoogle Scholar
  21. Dyer AG, Boyd-Gerny S, McLoughlin S, Rosa MGP, Simonov V, Wong BBM (2012) Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc R Soc B Biol Sci 279:3606–3615. CrossRefGoogle Scholar
  22. Edgar A (1936) Color variation in eastern North American flowers as exemplified by Hepatica acutiloba. Rhodora 38:301–304Google Scholar
  23. Ehrendorfer F, Ziman SN, König C, Keener CS, Button BE, Tsarenko ON, Bulakh EV, Boşcaiu M, Médail F, Kästner A (2009) Taxonomic revision, phylogenetics and transcontinental distribution of Anemone section Anemone (Ranunculaceae). Bot J Linn Soc 160:312–354. CrossRefGoogle Scholar
  24. Garcia JE, Shrestha M, Dyer AG (2018) Flower signal variability overwhelms receptor-noise and requires plastic color learning in bees. Behav Ecol 29:1286–1297. Google Scholar
  25. Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243CrossRefGoogle Scholar
  26. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780. CrossRefGoogle Scholar
  27. Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43. CrossRefGoogle Scholar
  28. Horovitz A (1976) Edaphic factors and flower colour distribution in the Anemoneae (Ranunculaceae). Plant Syst Evol 126:239–242. CrossRefGoogle Scholar
  29. Kameoka S, Sakio H, Abe H, Ikeda H, Setoguchi H (2017) Genetic structure of Hepatica nobilis var. japonica, focusing on within population flower color polymorphism. J Plant Res 130:263–271. CrossRefGoogle Scholar
  30. Keasar T, Shmida A, Zylbertal A (2008) Pollination ecology of the red Anemone coronaria (Ranunculaceae): honeybees may select for early flowering. In: Discussion Paper Series. JerusalemGoogle Scholar
  31. Keasar T, Harari AR, Sabatinelli G, Keith D, Dafni A, Shavit O, Zylbertal A, Shmida A (2010) Red anemone guild flowers as focal places for mating and feeding by Levant glaphyrid beetles. Biol J Linn Soc 99:808–817. CrossRefGoogle Scholar
  32. Keasar T, Gerchman J, Lev-Yadun S (2016) A seven-year study of flower-color polymorphism in a Mediterranean annual plant. Basic Appl Ecol 18:741–750CrossRefGoogle Scholar
  33. Kelber A (1999) Ovipositing butterflies use a red receptor to see green. J Exp Biol 202:2619–2630Google Scholar
  34. Kelber A (2001) Receptor based models for spontaneous colour choices in flies and butterflies. Entomol Exp Appl 99:231–244. CrossRefGoogle Scholar
  35. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453. CrossRefGoogle Scholar
  36. Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53. CrossRefGoogle Scholar
  37. Lovell JH (1902) The colors of northern polypetalous flowers. Am Nat 36:203–242CrossRefGoogle Scholar
  38. Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19. CrossRefGoogle Scholar
  39. Lunau K, Papiorek S, Eltz T, Sazima M (2011) Avoidance of achromatic colours by bees provides a private niche for hummingbirds. J Exp Biol 214:1607–1612. CrossRefGoogle Scholar
  40. Madahar C (1967) Mediterranean and Asian taxa of Anemone (section Eriocephalus) with tuberous rootstocks. Can J Bot 45:725–735. CrossRefGoogle Scholar
  41. Martin GJ, Lord NP, Branham MA, Bybee SM (2015) Review of the firefly visual system (Coleoptera: Lampyridae) and evolution of the opsin genes underlying color vision. Org Divers Evol 15:513–526. CrossRefGoogle Scholar
  42. Martínez-Harms J, Palacios AG, Márquez N, Estay P, Arroyo MTK, Mpodozis J (2010) Can red flowers be conspicuous to bees? Bombus dahlbomii and South American temperate forest flowers as a case in point. J Exp Biol 213:564–571. CrossRefGoogle Scholar
  43. Martínez-Harms J, Vorobyev M, Schorn J, Shmida A, Keasar T, Homberg U, Schmeling F, Menzel R (2012) Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J Comp Physiol A 198:451–463. CrossRefGoogle Scholar
  44. Melnattur KV, Pursley R, Lin T-Y, Ting C-Y, Smith PD, Pohida T, Lee C-H (2014) Multiple redundant medulla projection neurons mediate color vision in Drosophila. J Neurogenet 28:374–388. CrossRefGoogle Scholar
  45. Morawetz L, Svoboda A, Spaethe J, Dyer AG (2013) Blue colour preference in honeybees distracts visual attention for learning closed shapes. J Comp Physiol A 199:817–827. CrossRefGoogle Scholar
  46. Müller H (1873) Die Befruchtung der Blumen durch Insekten und die gegenseitigen Anpassungen beider: ein Beitrag zur Erkenntniss des ursächlichen Zusammenhanges in der organischen Natur. Engelmann, LeipzigCrossRefGoogle Scholar
  47. Narbona E, Wang H, Ortiz PL, Arista M, Imbert E (2018) Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol 20:8–20. CrossRefGoogle Scholar
  48. Paulk AC, Dacks AM, Gronenberg W (2009) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456. CrossRefGoogle Scholar
  49. R Development Core Team (2018) R: A language and environment for statistical computing. In: R Found. Stat. Comput.
  50. Rauscher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169:7–21CrossRefGoogle Scholar
  51. Raven PH (1972) Why are bird-visited flowers predominantly red? Evolution 26:674. CrossRefGoogle Scholar
  52. Rodríguez-Gironés MA, Santamaría L (2004) Why are so many bird flowers red? PLoS Biol 2:e350. CrossRefGoogle Scholar
  53. Schaefer HM, Schaefer V, Levey DJ (2004) How plant-animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584. CrossRefGoogle Scholar
  54. Schemske DW, Bierzychudek P (2001) Perspective: evolution of flower color in the desert annual Linanthus parryae: Wright Revisited. Evolution 55:1269–1282CrossRefGoogle Scholar
  55. Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower color in the desert annual Linanthus parryae: was Wright right? Evolution 61:2528–2543CrossRefGoogle Scholar
  56. Schemske DW, Bradshaw HD (2002) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci 96:11910–11915. CrossRefGoogle Scholar
  57. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315. CrossRefGoogle Scholar
  58. Shmida A (1981) Red display flowers of the Mediterranean. Isr L Nat 6:106–115Google Scholar
  59. Shrestha M, Dyer AG, Boyd-Gerny S, Wong BBM, Burd M (2013) Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytol 198:301–310. CrossRefGoogle Scholar
  60. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci 98:3898–3903. CrossRefGoogle Scholar
  61. Sprengel CK (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. F Vieweg, BerlinGoogle Scholar
  62. Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 120–138Google Scholar
  63. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749. CrossRefGoogle Scholar
  64. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  65. van der Kooi CJ, Dyer AG, Kevan PG, Lunau K (2019) Functional significance of the optical properties of flowers for visual signalling. Ann Bot 123:263–276. CrossRefGoogle Scholar
  66. van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol Evol 27:353–361. CrossRefGoogle Scholar
  67. Warren J, Mackenzie S (2001) Why are all colour combinations not equally represented as flower-colour polymorphisms? New Phytol 151:237–241. CrossRefGoogle Scholar
  68. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223. CrossRefGoogle Scholar
  69. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New YorkGoogle Scholar
  70. Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925. CrossRefGoogle Scholar
  71. Young HJ, Stanton ML (1990) Influences of floral variation on pollen removal and seed production in wild radish. Ecology 71:536–547. CrossRefGoogle Scholar
  72. Ziman SN, Bulakh E, Tsarenko O (2011) Anemone L. (Ranunculaceae): comparative morphology and taxonomy of the species from the Balkan flora. Bot Serbica 35:87–97Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurobiology, Faculty of Life SciencesUniversity of ViennaViennaAustria
  2. 2.Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), BiocenterUniversity of WürzburgWürzburgGermany
  3. 3.Department of Integrative Zoology, Faculty of Life SciencesUniversity of ViennaViennaAustria
  4. 4.Department of Behavioral Physiology and Sociobiology (Zoology II), BiocenterUniversity of WürzburgWürzburgGermany

Personalised recommendations