Advertisement

Foraging strategies and physiological adaptations in large carpenter bees

  • Hema SomanathanEmail author
  • Preeti Saryan
  • G. S. Balamurali
Original Paper
  • 171 Downloads

Abstract

Large carpenter bees are charismatic and ubiquitous flower visitors in the tropics and sub-tropics. Unlike honeybees and bumblebees that have been popular subjects of extensive studies on their neuroethology, behaviour and ecology, carpenter bees have received little attention. This review integrates what is known about their foraging behaviour as well as sensory, physiological and cognitive adaptations and is motivated by their versatility as flower visitors and pollinators. This is evident from their extremely generalist foraging and adeptness at handling diverse flower types as legitimate pollinators and as illegitimate nectar robbers. They purportedly use traplining to forage between isolated patches and are long-distance flyers over several kilometres suggesting well-developed spatial learning, route memory and navigational capabilities. They have a broad range of temperature tolerance and thermoregulatory capabilities which are likely employed in their forays into crepuscular and nocturnal time periods. Such temporal extensions into dim-light periods invoke a suite of visual adaptations in their apposition optics. Thus, we propose that carpenter bees are an excellent though understudied group for exploring the complex nature of plant-pollinator mutualisms from ecological and mechanistic perspectives.

Keywords

Apidae Flight activity Foraging Nocturnality Xylocopa 

Notes

Acknowledgements

We thank Friedrich Barth for the invitation to write this review and Almut Kelber for many bee discussions, IISER—TVM, Swedish International Development Agency and Wenner Gren Foundation funded field work conducted by HS, PS and BMG.

References

  1. Ackerman JD, Mesler MR, Lu KL, Montalvo AM (1982) Food-foraging behavior of male Euglossini (Hymenoptera: Apidae): vagabonds or trapliners? Biotropica 14:241–248CrossRefGoogle Scholar
  2. Anzenberger G (1977) Ethological study of African carpenter bees of the genus Xylocopa (Hymenoptera, Anthophoridae). Z Tierpsychol 44:337–374.  https://doi.org/10.1111/j.1439-0310.1977.tb01001.x PubMedCrossRefGoogle Scholar
  3. Balter M (2012) Why are our brains so big? Science 338:33–34PubMedCrossRefGoogle Scholar
  4. Banschbach VS, Waddington KD (1994) Risk-sensitive foraging in honey bees: no consensus among individuals and no effect of colony honey stores. Anim Behav 47:933–941CrossRefGoogle Scholar
  5. Ben Y, Cohen R, Gerling D, Moscovitz E (1978) The biology of Xylocopa pubescens Spinola (Hymenoptera: Anthophoridae) in Israel. Isr J Entomol 12:107–121Google Scholar
  6. Bernardino AS, Gaglianone MC (2008) Nest distribution and nesting habits of Xylocopa ordinaria Smith (Hymenoptera, Apidae) in a restinga area in the northern Rio de Janeiro State, Brazil. Rev Bras Entomol 52:434–440CrossRefGoogle Scholar
  7. Berry RP, Wcislo WT, Warrant EJ (2011) Ocellar adaptations for dim light vision in a nocturnal bee. J Exp Biol 214:1283–1293.  https://doi.org/10.1242/jeb.050427 PubMedCrossRefGoogle Scholar
  8. Bohart GE, Youssef NN (1976) The biology and behavior of Evylaeus galpinsiae Cockerell (Hymenoptera: Halictidae). Wasmann J Biol 34:185–234Google Scholar
  9. Bonelli B (1974) Osservazioni etoecologiche sugli Imenotteri aculeati dell’Etiopia. VII. Xylocopa (Mesotrichia) combusta Smith (Hymenoptera–Anthophoridae) Boll Ist Ent. Univ Bol 32:105–132Google Scholar
  10. Buatois A, Lihoreau M (2016) Evidence of trapline foraging in honeybees. J Exp Biol 219:2426–2429PubMedCrossRefGoogle Scholar
  11. Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand-Rheinhold, New York, pp 73–113Google Scholar
  12. Burgett DM, Sukumalanand P (2000) Flight activity of Xylocopa (Nyctomelitta) tranquebarica: a night flying carpenter bee (Hymenoptera: Apidae). J Apic Res 39:75–83CrossRefGoogle Scholar
  13. Burkart A, Schlindwein C, Lunau K (2014) Assessment of pollen reward and pollen availability in Solanum stramoniifolium and Solanum paniculatum for buzz-pollinating carpenter bees. Plant Biol 16:503–507.  https://doi.org/10.1111/plb.12111 PubMedCrossRefGoogle Scholar
  14. Byrne R, Whiten A (1989) Machiavellian intelligence: social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford Science Publications, OxfordGoogle Scholar
  15. Camillo E, Garófalo CA (1982) On the bionomics of Xylocopa frontalis (Olivier) and Xylocopa grisescens. (Lepeletier) in Southern Brazil. I. Nest construction and biological cycle. Rev Bras Biol 42:571–582Google Scholar
  16. Camillo E. Garófalo CA, Muccillo G (1986) On the bionomics of Xylocopa suspecta (Moure) in Southern Brazil: Nest construction and biological cycle (Hymenoptera, Anthophoridae). Rev Bras Biol 46:383–393Google Scholar
  17. Chappell MA (1982) Temperature regulation of carpenter bees (Xylocopa californica) foraging in the Colorado Desert of southern California. Physiol Zool 55:267–280CrossRefGoogle Scholar
  18. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86(7):361–367.  https://doi.org/10.1007/s001140050636 CrossRefGoogle Scholar
  19. Corbet SA, Willmer PG (1980) Pollination of the yellow passionfruit: nectar, pollen and carpenter bees. J Agric Sci 95:655–666.  https://doi.org/10.1017/S0021859600088055 doiCrossRefGoogle Scholar
  20. Dedej S, Delaplane KS (2004) Nectar-robbing carpenter bees reduce seed-setting capability of honey bees (Hymenoptera: Apidae) in rabbiteye blueberry, Vaccinium ashei, ‘Climax’. Environ Entomol 33:100–106.  https://doi.org/10.1603/0046-225X-33.1.100 CrossRefGoogle Scholar
  21. di Tanah Bencah KPB (2012) The importance of carpenter bee, Xylocopa varipuncta (Hymenoptera: Apidae) as pollination agent for mangrove community of Setiu wetland, Terengganu. Sains Malays 41:1057–1062Google Scholar
  22. Dorchin A, Filin I, Izhaki I, Dafni A (2012) Movement patterns of solitary bees in a threatened fragmented habitat. Apidologie 44:90–99CrossRefGoogle Scholar
  23. Dujardin F (1850) Mémoire sur le système nerveux des insectes. Ann Sci Nat Zool 14::195–206Google Scholar
  24. Dukas R, Real LA (1991) Learning foraging tasks by bees: a comparison between social and solitary species. Anim Behav 42:269–276.  https://doi.org/10.1016/S0003-3472(05)80558-5 CrossRefGoogle Scholar
  25. Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol Issues News Rev 6:178–190.  https://doi.org/10.1002/(SICI)1520-6505(1998) CrossRefGoogle Scholar
  26. Dunbar RIM, Shultz S (2007) Evolution in the social brain. Science 317:1344 LP–L1347CrossRefGoogle Scholar
  27. Dyer FC (1985) Nocturnal orientation by the Asian honeybee, Apis dorsata. Anim Behav 33:769–774CrossRefGoogle Scholar
  28. Eisikowitch D (1987) Calotropis procera Ait. (Asclepiadaceae) and Xylocopa spp.: a study of inter-relationships. In: Insect-Plants Proc 6th Inter Symp Insect-Plants Relat PAU (1986), pp 341–345Google Scholar
  29. Faegri K, van der Pijl L (1979) Principles of pollination ecology. Pergamon Press, OxfordGoogle Scholar
  30. Frankie GW, Vinson SB (1977) Scent marking of passion flowers in Texas by females of Xylocopa virginica texana (Hymenoptera: Anthophoridae). J Kansas Entomol Soc 50:613–625Google Scholar
  31. Frederiksen R, Wcislo WT, Warrant EJ (2008) Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 18:349–353PubMedCrossRefGoogle Scholar
  32. Gerling D, Hermann HR (1978) Biology and mating behavior of Xylocopa virginica L. (Hymenoptera, Anthophoridae). Behav Ecol Sociobiol 3:99–111.  https://doi.org/10.1007/BF00294984 CrossRefGoogle Scholar
  33. Gerling D, Hurd PD Jr, Hefetz A (1983) Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa latreille) (Hymenoptera: Apoidea). Smithson Contrib Zool 193:315–324.  https://doi.org/10.5479/si.00810282.369 CrossRefGoogle Scholar
  34. Gerling D, Velthuis HHW, Hefet A (1989) Bionomics of the large carpenter bees of the genus Xylocopa. Annu Rev Entomol 34:163–190.  https://doi.org/10.1146/annurev.ento.34.1.163 CrossRefGoogle Scholar
  35. Gottlieb D, Keasar T, Shmida A, Motro U (2005) Possible foraging benefits of bimodal daily activity in Proxylocopa olivieri (Lepeletier) (Hymenoptera: Anthophoridae). Environ Entomol 34:417–424.  https://doi.org/10.1603/0046-225X-34.2.417 CrossRefGoogle Scholar
  36. Goulson D (1999) Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect Plant Ecol Evol Syst 2:185–209.  https://doi.org/10.1078/1433-8319-00070 CrossRefGoogle Scholar
  37. Goulson D, Stout JC (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32:105–111CrossRefGoogle Scholar
  38. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596.  https://doi.org/10.1007/s00442-007-0752-9 PubMedCrossRefGoogle Scholar
  39. Greiner B, Ribi WA, Warrant EJ (2004a) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390PubMedCrossRefGoogle Scholar
  40. Greiner B, Ribi WA, Wcislo WT, Warrant EJ (2004b) Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 318:429–437PubMedCrossRefGoogle Scholar
  41. Gronenberg W, Riveros AJ (2009) Social brains and behavior: past and present. In: Jadau J, Fewell J (eds) Organisation of insect societies: From genome to sociocomplexity. Harvard University Press, CambridgeGoogle Scholar
  42. Heinrich B, Buchmann SL (1986) Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. J Comp Physiol B 156:557–562.  https://doi.org/10.1007/BF00691042 CrossRefGoogle Scholar
  43. Heinrich B, Esch H (1994) Thermoregulation in bees. Am Sci 82:164–170Google Scholar
  44. Hogendoorn K, Leys R (1993) The superseded female’s dilemma: ultimate and proximate factors that influence guarding behaviour of the carpenter bee Xylocopa pubescens. Behav Ecol Sociobiol 33:371–381.  https://doi.org/10.1007/BF00170252 CrossRefGoogle Scholar
  45. Hogendoorn K, Velthuis HHW (1999) Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. Insectes Soc 46:198–207.  https://doi.org/10.1007/s000400050135 CrossRefGoogle Scholar
  46. Hogendoorn K, Steen Z, Schwarz MP (2000) Native Australian carpenter bees as a potential alternative to introducing bumble bees for tomato pollination in greenhouses. J Apic Res 39:67–74.  https://doi.org/10.1080/00218839.2000.11101023 CrossRefGoogle Scholar
  47. Hopkins MJG, Hopkins HCF, Sothers CA (2000) Nocturnal pollination of Parkia velutina by Megalopta bees in Amazonia and its possible significance in the evolution of chiropterophily. J Trop Ecol 16:733–746CrossRefGoogle Scholar
  48. Hurd PD (1955) The carpenter bees of California (Hymenoptera: Apoidea). University of California Press, BerkeleyGoogle Scholar
  49. Hurd Paul DJR, Moure JSCMF (1960) A new-world subgenus of bamboo-nesting carpenter bees belonging to the genus Xylocopa latreille (Hymenoptera: Apoidea). Ann Entomol Soc Am 53:809–821CrossRefGoogle Scholar
  50. Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253CrossRefGoogle Scholar
  51. Inouye DW (1983) The ecology of nectar robbing. In: Bentley B, Illas T (eds) The biology of nectaries. Columbia Univ Press, New YorkGoogle Scholar
  52. Iwata K (1976) Evolution of instinct: comparative ethology of hymenoptera. Amerind Publishing Company, New Delhi, IndiaGoogle Scholar
  53. Jacobson E (1927) Fauna sumatrensis: Xylocopinae, biologie. Suppl Entomol 1 6:93–103Google Scholar
  54. Janzen DH (1964) Notes on the behavior of four subspecies of the carpenter bee, Xylocopa (Notoxylocopa) tabaniformis, in Mexico. Ann Entomol Soc Am 57:296–301CrossRefGoogle Scholar
  55. Jolly A (1966) Lemur social behavior and primate intelligence. Science 153:501–506PubMedCrossRefGoogle Scholar
  56. Kapil RP, Dhaliwal JS (1969) Biology of Xylocopa species. II. Field activities, flight range and trials on transportation of nests. Punjab Agric Univ J Res 6:262–271Google Scholar
  57. Keasar T (2010) Large carpenter bees as agricultural pollinators. Psyche.  https://doi.org/10.1155/2010/927463 (Article ID 927463) CrossRefGoogle Scholar
  58. Keasar T, Motro UZI, Shur Y, Shmida AVI (1996) Overnight memory retention of foraging skills by bumblebees is imperfect. Anim Behav 52:95–104CrossRefGoogle Scholar
  59. Kelber A, Warrant EJ, Pfaff M, Wallén R, Theobald JC, Wcislo WT, Raguso RA (2006) Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav Ecol 17:63–72CrossRefGoogle Scholar
  60. Kerfoot WB (1967a) Correlation between ocellar size and the foraging activities of bees (Hymenoptera; Apoidea). Am Nat 101:65–70.  https://doi.org/10.1086/282470 CrossRefGoogle Scholar
  61. Kerfoot WB (1967b) The lunar periodicity of Sphecodogastra texana, a nocturnal bee (Hymenoptera: Halictidae). Anim Behav 15:479–486.  https://doi.org/10.1016/0003-3472(67)90047-4 PubMedCrossRefGoogle Scholar
  62. Lewis AC (1986) Memory constraints and flower choice in Pieris rapae. Science 232:863–865PubMedCrossRefGoogle Scholar
  63. Lewis AC (1989) Flower visit consistency in Pieris rapae, the cabbage butterfly. J Anim Ecol 58:1–13CrossRefGoogle Scholar
  64. Leys R, Cooper SJB, Schwarz MP (2002) Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae). Biol J Linn Soc 77(2):249–266CrossRefGoogle Scholar
  65. Lihoreau M, Latty T, Chittka L (2012) An exploration of the social brain hypothesis in insects. Front Physiol 3:442.  https://doi.org/10.3389/fphys.2012.00442 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Linsley EG, Rick CM, Stephens SG (1966) Observations on floral relationships of Galapagos carpenter bee. Pan Pac Entomol 42:1–18Google Scholar
  67. McGuire CM (1999) Passiflora incarnata (Passifloraceae): a new fruit crop. Econ Bot 53:161–176CrossRefGoogle Scholar
  68. Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins, BaltimoreGoogle Scholar
  69. Nicolson SW, Louw GN (1982) Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J Exp Zool 222:287–296.  https://doi.org/10.1002/jez.1402220311 CrossRefGoogle Scholar
  70. Nishida T (1963) Ecology of the pollinators of passion fruit. Tech Bull Hawaii Agric Exp Stn 55:38Google Scholar
  71. O’Brian LB, Hurd JRPD (1965) Carpenter bees of the subgenus Notoxylocopa (Hymenoptera: Apoidea). Ann Entomol Soc Am 58:175–196CrossRefGoogle Scholar
  72. Ohashi K, Thomson JD (2009) Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Ann Bot 103:1365–1378PubMedPubMedCentralCrossRefGoogle Scholar
  73. Orth AI, Waddington KD (1997) Hierarchical use of information by nectar-foraging carpenter bees on vertical inflorescences: floral color and spatial position. Isr J Plant Sci 45:213–221.  https://doi.org/10.1080/07929978.1997.10676685 CrossRefGoogle Scholar
  74. Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Jette KT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci 105:13456–13461.  https://doi.org/10.1073/pnas.0806040105 PubMedCrossRefGoogle Scholar
  75. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40PubMedCrossRefGoogle Scholar
  76. Perez SM, Waddington KD (1996) Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am Zool 36:435–446CrossRefGoogle Scholar
  77. Proctor M, Yeo P (1973) The pollination of flowers. Collins, LondonGoogle Scholar
  78. Pyke GH (1980) Optimal foraging in bumblebees: calculation of net rate of energy intake and optimal patch choice. Theor Popul Biol 17:232–246PubMedCrossRefGoogle Scholar
  79. Pyke GH (1982) Foraging in bumblebees: rule of departure from an inflorescence. Can J Zool 60:417–428CrossRefGoogle Scholar
  80. Raju AS, Rao SP (2006) Nesting habits, floral resources and foraging ecology of large carpenter bees (Xylocopa latipes and Xylocopa pubescens) in India. Curr Sci 90:1210–1217Google Scholar
  81. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  82. Roubik DW (1995) Pollination of cultivated plants in the tropics. Food & Agriculture Organization, RomeGoogle Scholar
  83. Sadeh A, Shmida A, Keasar T (2007) The carpenter bee Xylocopa pubescens as an agricultural pollinator in greenhouses. Apidologie 38:508–517.  https://doi.org/10.1051/apido:2007036 CrossRefGoogle Scholar
  84. Sampson BJ, Danka RG, Stringer SJ (2004) Nectar robbery by bees Xylocopa virginica and Apis mellifera contributes to the pollination of rabbiteye blueberry. J Econ Entomol 97:735–740.  https://doi.org/10.1603/0022-0493(2004)097%5B0735:NRBBXV%5D2.0.CO;2 PubMedCrossRefGoogle Scholar
  85. Schaffer WM, Jensen DB, Hobbs DE, Gurevitch J, Todd JR, Schaffer MV (1979) Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60:976–987.  https://doi.org/10.2307/1936866 CrossRefGoogle Scholar
  86. Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61–66CrossRefGoogle Scholar
  87. Schremmer F (1972) Der stechsaugrüssel, der nektarraub, das pollensammeln und der blütenbesuch der holzbienen (Xylocopa) (Hymenoptera. Apidae). Z Morphol Tiere 72:263–294CrossRefGoogle Scholar
  88. Scott PE, Buchmann SL, O’Rourke MK (1993) Evidence for mutualism between a flower-piercing carpenter bee and ocotillo: use of pollen and nectar by nesting bees. Ecol Entomol 18:234–240.  https://doi.org/10.1111/j.1365-2311.1993.tb01095.x CrossRefGoogle Scholar
  89. Shafir S, Wiegmann DD, Smith BH, Real LA (1999) Risk-sensitive foraging: choice behaviour of honeybees in response to variability in volume of reward. Anim Behav 57:1055–1061PubMedCrossRefGoogle Scholar
  90. Smith AR, Wcislo WT, O’Donnell S (2003) Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae). Behav Ecol Sociobiol 54:14–21CrossRefGoogle Scholar
  91. Somanathan H, Borges RM (2001) Nocturnal pollination by the carpenter Bee Xylocopa tenuiscapa (Apidae) and the effect of floral display on fruit set of Heterophragma quadriloculare (Bignoniaceae) in India. Biotropica 33:78–89CrossRefGoogle Scholar
  92. Somanathan H, Borges RM, Warrant EJ, Kelber A (2008a) Visual ecology of Indian carpenter bees I: Light intensities and flight activity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:97–107.  https://doi.org/10.1007/s00359-007-0291-1 PubMedCrossRefGoogle Scholar
  93. Somanathan H, Borges RM, Warrant EJ, Kelber A (2008b) Nocturnal bees learn landmark colours in starlight. Curr Biol.  https://doi.org/10.1016/j.cub.2008.08.023 PubMedCrossRefGoogle Scholar
  94. Somanathan H, Kelber A, Borges RM, Wallén R, Warrant EJ (2009a) Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. J Comp Physiol A 195:571–583.  https://doi.org/10.1007/s00359-009-0432-9 CrossRefGoogle Scholar
  95. Somanathan H, Warrant EJ, Borges RM, Wallén R, Kelber A (2009b) Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. J Exp Biol 212:2448–2453.  https://doi.org/10.1242/jeb.031484 PubMedCrossRefGoogle Scholar
  96. Somanathan H, Borges RM, Warrant EJ, Kelber A (2017) Visual adaptations for mate detection in the male carpenter bee Xylocopa tenuiscapa. PLoS One 12:e0168452.  https://doi.org/10.1371/journal.pone.0168452 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stark RE (1992) Cooperative nesting in the multivoltine large carpenter bee Xylocopa sulcatipes Maa (Apoidea: Anthophoridae): do helpers gain or lose to solitary females? Ethology 91:301–310.  https://doi.org/10.1111/j.1439-0310.1992.tb00871.x CrossRefGoogle Scholar
  98. Steen Z, Schwarz MP (2000) Nesting and life cycle of the Australian green carpenter bees Xylocopa (Lestis) aeratus Smith and Xylocopa (Lestis) bombylans (Fabricius) (Hymenoptera: Apidae: Xylocopinae). Aust J Entomol 39:291–300.  https://doi.org/10.1046/j.1440-6055.2000.00195.x CrossRefGoogle Scholar
  99. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37PubMedPubMedCentralGoogle Scholar
  100. Theobald JC, Greiner B, Wcislo WT, Warrant EJ (2006) Visual summation in night-flying sweat bees: a theoretical study. Vis Res 46:2298–2309PubMedCrossRefGoogle Scholar
  101. Theobald JC, Coates MM, Wcislo WT, Warrant EJ (2007) Flight performance in night-flying sweat bees suffers at low light levels. J Exp Biol 210:4034–4042.  https://doi.org/10.1242/jeb.003756 PubMedCrossRefGoogle Scholar
  102. Thomson JD (1996) Trapline foraging by bumblebees: I. Persistence of flight-path geometry. Behav Ecol 7:158–164CrossRefGoogle Scholar
  103. Thomson JD, Slatkin M, Thomson BA (1997) Trapline foraging by bumble bees: II. Definition and detection from sequence data. Behav Ecol 8:199–210CrossRefGoogle Scholar
  104. Velthuis HHW (1987) Evolution of sociality: ultimate and proximate factors leading to primitive social behavior in carpenter bees. Experientia 54:405–430Google Scholar
  105. Velthuis HHW, Gerling D (1983) At the brink of sociality: Interactions between adults of the carpenter bee Xylocopa pubescens spinola. Behav Ecol Sociobiol 12:209–214.  https://doi.org/10.1007/BF00290773 CrossRefGoogle Scholar
  106. Viana BF, Kleinert AMP, Silva FO (2002) Ecology of Xylocopa (Neoxylocopa) cearensis (Hymenoptera, Anthophoridae) in Abaeté sand dunes, Salvador, Bahia. Iheringia Série Zool 92:47–57CrossRefGoogle Scholar
  107. Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801CrossRefGoogle Scholar
  108. Volynchik S, Plotkin M, Ermakov NY, Bergman DJ, Ishay JS (2006) Presence of a thermoregulatory hot spot in the prothorax of the large carpenter bee and the bumble bee. Microsc Res Tech 69:903–912PubMedCrossRefGoogle Scholar
  109. Waddington KD (1995) Bumblebees do not respond to variance in nectar concentration. Ethology 101:33–38CrossRefGoogle Scholar
  110. Waller GD, Vaissiere BE, Moffett JO, Martin JH (1985) Comparison of carpenter bees (Xylocopa varipuncta Patton) (Hymenoptera: Anthophoridae) and honey bees (Apis mellifera L.) (Hymenoptera: Apidae) as pollinators of male-sterile cotton in cages. J Econ Entomol 78:558–561CrossRefGoogle Scholar
  111. Warrant EJ (2004) Vision in the dimmest habitats on earth. J Comp Physiol A 190:765–789CrossRefGoogle Scholar
  112. Warrant EJ (2008) Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. J Exp Biol 211:1737–1746.  https://doi.org/10.1242/jeb.015396 PubMedCrossRefGoogle Scholar
  113. Warrant EJ, Kelber A, Gislén A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318PubMedCrossRefGoogle Scholar
  114. Waser NM (1986) Flower constancy: definition, cause, and measurement. Am Nat 127:593–603CrossRefGoogle Scholar
  115. Watmough RH (1973) Biology and behaviour of carpenter bees in southern Africa. J Entomol Soc S Afr 37:261–281Google Scholar
  116. Wcislo WT, Arneson L, Roesch K, Gonzalez V, Smith A, Fernández H (2004) The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? Biol J Linn Soc 83:377–387CrossRefGoogle Scholar
  117. Wikelski M, Moxley J, Eaton-Mordas A, Lopez-Uribe MM, Holland R, Moskowitz D, Roubik DW, Kays R (2010) Large-range movements of neotropical orchid bees observed via radio telemetry. PLoS One 5:5–10.  https://doi.org/10.1371/journal.pone.0010738 CrossRefGoogle Scholar
  118. Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in bees and wasps. J Exp Biol 199:245–252.  https://doi.org/10.1109/CGNCC.2014.7007271 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hema Somanathan
    • 1
    Email author
  • Preeti Saryan
    • 1
  • G. S. Balamurali
    • 1
  1. 1.IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of BiologyIndian Institute of Science Education and Research ThiruvananthapuramThiruvananthapuramIndia

Personalised recommendations