Advertisement

Brain evolution in social insects: advocating for the comparative approach

  • R. Keating GodfreyEmail author
  • Wulfila Gronenberg
Review

Abstract

Sociality is classified as one of the major transitions in the evolution of complexity and much effort has been dedicated to understanding what traits predispose lineages to sociality. Conversely, studies addressing the role of sociality in brain evolution (e.g., the social brain hypothesis) have not focused on particular traits and instead relied largely on measurements of relative brain composition. Hymenoptera range from solitary to advanced social species, providing enticing comparisons for studying sociality and neural trait evolution. Here we argue that measuring the role of sociality in brain evolution will benefit from attending to recent advances in neuroethology and adopting existing phylogenetic comparative methods employed in analysis of non-neural traits. Such analyses should rely on traits we expect to vary at the taxonomic level used in comparative analyses and include phylogenetic structure. We outline the limits of brain size and volumetric interpretation and advocate closer attention to trait stability and plasticity at different levels of organization. We propose neural traits measured at the cellular, circuit, and molecular levels will serve as more robust variables for evolutionary analyses. We include examples of particular traits and specific clades that are well-suited to answer questions about the role of sociality in nervous system evolution.

Keywords

Social brain hypothesis Brain size Division of labor Evolutionary framework 

Abbreviations

EQ

Encephalization quotient

IN

Local interneurons

KC

Kenyon cells

MB

Mushroom body

MBON

Mushroom body output neurons

PCM

Phylogenetic comparative methods

PN

Projection neurons

SN

Sensory neurons entering antennal lobe

Notes

Acknowledgements

We thank Skye Long for helpful comments on the manuscript. This work was supported by a grant from the University of Arizona Graduate Student and Professional Council (GPSC) to RKG and NSF grant ISO-1354191 to WG.

References

  1. Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199–221.  https://doi.org/10.1086/204350 CrossRefGoogle Scholar
  2. Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74:970–974.  https://doi.org/10.1016/j.neuron.2012.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alten V (1910) Zur Phylogenie des Hymenopterengehirns. Jena Z Med Naturwiss 46:511–590Google Scholar
  4. Amador-Vargas S, Gronenberg W, Wcislo WT, Mueller U (2015) Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes. Proc Biol Sci 282:20142502.  https://doi.org/10.1098/rspb.2014.2502 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ames a (1992) Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can J Physiol Pharmacol 70 Suppl:S158–164.  https://doi.org/10.1139/y92-257 CrossRefPubMedGoogle Scholar
  6. Aoki K, Moody M (1981) One- and two-locus models of the origin of worker behavior in hymenoptera. J Theor Biol.  https://doi.org/10.1016/0022-5193(81)90362-3 CrossRefGoogle Scholar
  7. Arenas A, Giurfa M, Sandoz JC, Hourcade B, Devaud JM, Farina WM (2012) Early olfactory experience induces structural changes in the primary olfactory center of an insect brain. Eur J Neurosci 35:682–690.  https://doi.org/10.1111/j.1460-9568.2012.07999.x CrossRefPubMedGoogle Scholar
  8. Arganda-Carreras I, Manoliu T, Mazuras N, Schulze F, Iglesias JE, Bühler K, Jenett A, Rouyer F, Andrey P (2018) A statistically representative atlas for mapping neuronal circuits in the Drosophila adult brain. Front Neuroinform.  https://doi.org/10.3389/fninf.2018.00013 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Armstrong JD, van Hemert JI (2009) Towards a virtual fly brain. Philos Trans A Math Phys Eng Sci 367:2387–2397.  https://doi.org/10.1098/rsta.2008.0308 CrossRefPubMedGoogle Scholar
  10. Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TTB, Chen N, Korff W et al (2014) Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 3:e04580.  https://doi.org/10.7554/eLife.04580 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Avarguès-Weber A, Giurfa M (2013) Conceptual learning by miniature brains. Proc R Soc B Biol Sci 280:19–21.  https://doi.org/10.1098/rspb.2013.1907 CrossRefGoogle Scholar
  12. Bank S, Sann M, Mayer C, Meusemann K, Donath A, Podsiadlowski L, Kozlov A, Petersen M, Krogmann L, Meier R, Rosa P, Schmitt T, Wurdack M, Liu S, Zhou X et al (2017) Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Mol Phylogenet Evol 116:213–226.  https://doi.org/10.1016/j.ympev.2017.08.020 CrossRefPubMedGoogle Scholar
  13. Barrett L, Henzi P, Rendall D (2007) Social brains, simple minds: does social complexity really require cognitive complexity? Philos Trans R Soc B 362:561–575.  https://doi.org/10.1098/rstb.2006.1995 CrossRefGoogle Scholar
  14. Bergman TJ, Beehner JC (2015) Measuring social complexity. Anim Behav 103:203–209.  https://doi.org/10.1016/j.anbehav.2015.02.018 CrossRefGoogle Scholar
  15. Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46:703–727.  https://doi.org/10.1146/annurev.ento.46.1.703 CrossRefPubMedGoogle Scholar
  16. Biffar L, Stollewerk A (2014) Conservation and evolutionary modifications of neuroblast expression patterns in insects. Dev Biol 388:103–116.  https://doi.org/10.1016/j.ydbio.2014.01.028 CrossRefPubMedGoogle Scholar
  17. Boomsma JJ, Gawne R (2018) Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol Rev 93:28–54.  https://doi.org/10.1111/brv.12330 CrossRefPubMedGoogle Scholar
  18. Boomsma JJ, Huszár DB, Pedersen JS (2014) The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim Behav 92:241–252.  https://doi.org/10.1016/j.anbehav.2014.03.005 CrossRefGoogle Scholar
  19. Bourke FG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257.  https://doi.org/10.1046/j.1420-9101.1999.00028.x CrossRefGoogle Scholar
  20. Brahma A, Mandal S, Gadagkar R (2018) Emergence of cooperation and division of labor in the primitively eusocial wasp Ropalidia marginata. PNAS 115:756–761.  https://doi.org/10.1073/pnas.1714006115 CrossRefPubMedGoogle Scholar
  21. Brand N, Chapuisat M (2012) Born to be bee, fed to be worker? The caste system of a primitively eusocial insect. Front Zool 9:1–9.  https://doi.org/10.1186/1742-9994-9-35 CrossRefGoogle Scholar
  22. Bressan JMA, Benz M, Oettler J, Heinze J, Hartenstein V, Sprecher SG (2015) A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior. Front Neuroanat 8:1–13.  https://doi.org/10.3389/fnana.2014.00166 CrossRefGoogle Scholar
  23. Brown SM, Napper RM, Thompson CM, Mercer AR (2002) Stereological analysis reveals striking differences in the structural plasticity of two readily identifiable glomeruli in the antennal lobes of the adult worker Honeybee. J Neurosci 22:8514–8522.  https://doi.org/10.1523/jneurosci.22-19-08514.2002 CrossRefPubMedGoogle Scholar
  24. Caetano DS, Harmon LJ (2017) ratematrix: an R package for studying evolutionary integration among several traits on phylogenetic trees. Methods Ecol Evol 8:1920–1927.  https://doi.org/10.1111/2041-210X.12826 CrossRefGoogle Scholar
  25. Cardinal S, Danforth BN (2011) The antiquity and evolutionary history of social behavior in bees. PLoS One 6:e21086.  https://doi.org/10.1371/journal.pone.0021086 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V (2010) An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8:e1000502.  https://doi.org/10.1371/journal.pbio.1000502 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chakraborty M, Jarvis ED (2015) Brain evolution by brain pathway duplication. Philos Trans R Soc B Biol Sci 370:20150056–20150056.  https://doi.org/10.1098/rstb.2015.0056 CrossRefGoogle Scholar
  28. Changizi MA (2003) Relationship between number of muscles, behavioral repertoire size, and encephalization in mammals. J Theor Biol doi.  https://doi.org/10.1006/jtbi.2003.3125 CrossRefGoogle Scholar
  29. Cole BJ (1980) Repertoire convergence in two Mangrove ants, Zacryptocerus varians and Camponotus (Colobopsis) sp. Insectes Soc 27:265–275.  https://doi.org/10.1007/BF02223668 CrossRefGoogle Scholar
  30. Cole BJ (1985) Size and behavior in ants: constraints on complexity. Proc Natl Acad Sci 82:8548–8551.  https://doi.org/10.1073/pnas.82.24.8548 CrossRefPubMedGoogle Scholar
  31. Cornwell W, Nakagawa S (2017) Phylogenetic comparative methods. Curr Biol 27:R333–R336.  https://doi.org/10.1016/j.cub.2017.03.049 CrossRefPubMedGoogle Scholar
  32. Danforth BN (2013) Social insects: are ants just wingless bees? Curr Biol 23:R1011–R1012.  https://doi.org/10.1016/j.cub.2013.10.026 CrossRefPubMedGoogle Scholar
  33. Danforth BN, Cardinal S, Praz C, Almeida EAB, Michez D (2013) The impact of molecular data on our understanding of bee phylogeny and evolution. Annu Rev Entomol 58:57–78.  https://doi.org/10.1146/annurev-ento-120811-153633 CrossRefPubMedGoogle Scholar
  34. Davis RL (2011) Traces of Drosophila memory. Neuron 70:8–19.  https://doi.org/10.1016/j.neuron.2011.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Deaner RO, Isler K, Burkart J, van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70:115–124.  https://doi.org/10.1159/000102973 CrossRefPubMedGoogle Scholar
  36. DeCasien AR, Williams SA, Higham JP (2017) Primate brain size is predicted by diet but not sociality. Nat Ecol Evol 1:0112.  https://doi.org/10.1038/s41559-017-0112 CrossRefGoogle Scholar
  37. Dobson SD, Sherwood CC (2011) Correlated evolution of brain regions involved in producing and processing facial expressions in anthropoid primates. Biol Lett 7:86–88.  https://doi.org/10.1098/rsbl.2010.0427 CrossRefPubMedGoogle Scholar
  38. Dreyer (2010) 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Syst Neurosci 4:1–13.  https://doi.org/10.3389/neuro.06.003.2010 CrossRefGoogle Scholar
  39. Dujardin F (1850) Mémoire sur le système nerveux des insectes. Ann Sci Nat é 14:195–205Google Scholar
  40. Dunbar RIM (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 22:469–493.  https://doi.org/10.1016/0047-2484(92)90081-J CrossRefGoogle Scholar
  41. Dunbar RIM (2009) The social brain hypothesis and its implications for social evolution. Ann Hum Biol 36:562–572.  https://doi.org/10.1080/03014460902960289 CrossRefPubMedGoogle Scholar
  42. Dunbar RI, Shultz S (2007) Understanding primate brain evolution. Philos Trans R Soc B Biol Sci 362:649–658.  https://doi.org/10.1098/rstb.2006.2001 CrossRefGoogle Scholar
  43. Dunbar RIM, Shultz S (2017) Why are there so many explanations for primate brain evolution? Philos Trans R Soc B Biol Sci 372:20160244.  https://doi.org/10.1098/rstb.2016.0244 CrossRefGoogle Scholar
  44. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS et al (2017) The complete connectome of a learning and memory centre in an insect brain. Nature 548:175–182.  https://doi.org/10.1038/nature23455 CrossRefPubMedPubMedCentralGoogle Scholar
  45. el Jundi B, Heinze S, Lenschow C, Kurylas AE, Rohlfing T, Homberg U (2009a) The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Front Syst Neurosci 3:1–15.  https://doi.org/10.3389/neuro.06.021.2009 CrossRefGoogle Scholar
  46. el Jundi B, Huetteroth W, Kurylas AE, Schachtner J (2009b) Anisometric brain dimorphism revisited: implementation of a volumetric 3D standard brain in Manduca sexta. J Comp Neurol 517:210–225.  https://doi.org/10.1002/cne.22150 CrossRefPubMedGoogle Scholar
  47. Fahrbach SE, Van Nest BN (2016) Synapsin-based approaches to brain plasticity in adult social insects. Curr Opin Insect Sci 18:27–34.  https://doi.org/10.1016/j.cois.2016.08.009 CrossRefPubMedGoogle Scholar
  48. Falibene A, Roces F, Rössler W (2015) Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants. Front Behav Neurosci 9:1–13.  https://doi.org/10.3389/fnbeh.2015.00084 CrossRefGoogle Scholar
  49. Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18.  https://doi.org/10.1159/000352057 CrossRefPubMedGoogle Scholar
  50. Farris SM (2016) Insect societies and the social brain. Curr Opin Insect Sci 15:1–8.  https://doi.org/10.1016/j.cois.2016.01.010 CrossRefPubMedGoogle Scholar
  51. Farris SM, Schulmeister S (2011) Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc R Soc B Biol Sci 278:940–951.  https://doi.org/10.1098/rspb.2010.2161 CrossRefGoogle Scholar
  52. Farris SM, Strausfeld NJ (2003) A unique mushroom body substructure common to basal cockroaches and to termites. J Comp Neurol 456:305–320.  https://doi.org/10.1002/cne.10517 CrossRefPubMedGoogle Scholar
  53. Ferguson-Gow H, Sumner S, Bourke AFG, Jones KE (2014) Colony size predicts division of labour in attine ants. Proc R Soc B Biol Sci.  https://doi.org/10.1098/rspb.2014.1411 CrossRefGoogle Scholar
  54. Finelli LA, Haney S, Bazhenov M, Stopfer M, Sejnowski TJ (2008) Synaptic learning rules and sparse coding in a model sensory system. PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1000062 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Fjerdingstad EJ, Crozier RH (2006) The evolution of worker caste diversity in social insects. Am Nat 167:390–400.  https://doi.org/10.1086/499545 CrossRefPubMedGoogle Scholar
  56. Francescato E, Massolo A, Landi M, Gerace L, Hashim R, Turillazzi S (2002) Colony membership, division of labor, and genetic relatedness among females of colonies of Eustenogaster fraterna (Hymenoptera, Vespidae, Stenogastrinae). J Insect Behav 15:153–170.  https://doi.org/10.1023/A:1015489532040 CrossRefGoogle Scholar
  57. Gabi M, Collins CE, Wong P, Torres LB, Kaas JH, Herculano-Houzel S (2010) Cellular scaling rules for the brains of an extended number of primate species. Brain Behav Evol 76:32–44.  https://doi.org/10.1159/000319872 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gibbs J, Brady SG, Kanda K, Danforth BN (2012) Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Mol Phylogenet Evol 65:926–939.  https://doi.org/10.1016/j.ympev.2012.08.013 CrossRefPubMedGoogle Scholar
  59. Gittleman JL (1986) Carnivore brain size, behavioral ecology, and phylogeny. J Mammal 67:23–36.  https://doi.org/10.1126/science.95.2469.427-b CrossRefGoogle Scholar
  60. Goldman-Huertas B, Mitchell RF, Lapoint RT, Faucher CP, Hildebrand JG, Whiteman NK (2015) Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci 112:3026–3031.  https://doi.org/10.1073/pnas.1424656112 CrossRefPubMedGoogle Scholar
  61. Gottardo M, Dallai R, Mercati D, Hörnschemeyer T, Beutel RG (2016) The evolution of insect sperm—an unusual character system in a megadiverse group. J Zool Syst Evol Res 54:237–256.  https://doi.org/10.1111/jzs.12136 CrossRefGoogle Scholar
  62. Groh C, Lu Z, Meinertzhagen IA, Rössler W (2012) Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J Comp Neurol 520:3509–3527.  https://doi.org/10.1002/cne.23102 CrossRefPubMedGoogle Scholar
  63. Gronenberg W, Riveros AJ (2009) Social brains and behavior: past and present. In: Organization of insect societies. pp 377–401Google Scholar
  64. Gronenberg W, Ash LE, Tibbetts EA (2008) Correlation between facial pattern recognition and brain composition in paper wasps. Brain Behav Evol 71:1–14.  https://doi.org/10.1159/000108607 CrossRefPubMedGoogle Scholar
  65. Gruter C, Menezes C, Imperatriz-Fonseca VL, Ratnieks FLW (2012) A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proc Natl Acad Sci 109:1182–1186.  https://doi.org/10.1073/pnas.1113398109 CrossRefPubMedGoogle Scholar
  66. Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711.  https://doi.org/10.1016/j.neuron.2011.11.003 CrossRefPubMedGoogle Scholar
  67. Harvey PH, Clutton-Brock TH, Mace GM (1980) Brain size and ecology in small mammals and primates. Proc Natl Acad Sci U S A 77:4387–4389.  https://doi.org/10.1073/pnas.77.7.4387 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hasenstaub A, Otte S, Callaway E, Sejnowski TJ (2010) Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci U S A 107:12329–12334.  https://doi.org/10.1073/pnas.0914886107 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, Oxford, EnglandGoogle Scholar
  70. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275.  https://doi.org/10.1038/nrn1074 CrossRefPubMedGoogle Scholar
  71. Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:1–11.  https://doi.org/10.3389/neuro.09.031.2009 CrossRefGoogle Scholar
  72. Herculano-Houzel S (2011) Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS One 6:e17514.  https://doi.org/10.1371/journal.pone.0017514 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25(10):2518–2521CrossRefPubMedGoogle Scholar
  74. Hofman MA (1983a) Evolution of brain size in neonatal and adult placental mammals: a theoretical approach. J Theor Biol 105:317–332.  https://doi.org/10.1016/S0022-5193(83)80011-3 CrossRefPubMedGoogle Scholar
  75. Hofman MA (1983b) Engergy metabolism, brain size and longevity in mammals. Q Rev Biol 58:495–512CrossRefPubMedGoogle Scholar
  76. Hourcade B, Perisse E, Devaud J-M, Sandoz J-C (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16:607–615CrossRefPubMedGoogle Scholar
  77. Hourcade B, Muenz TS, Sandoz J-C, Rössler W, Devaud J-M (2010) Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 30:6461–6465.  https://doi.org/10.1523/JNEUROSCI.0841-10.2010 CrossRefPubMedGoogle Scholar
  78. Howse PE (1975) Brain structure and behavior in insects. Annu Rev Entomol 20:359–379CrossRefPubMedGoogle Scholar
  79. Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216.  https://doi.org/10.1126/science.1200609 CrossRefPubMedGoogle Scholar
  80. Humphrey N (1976) The social function of intellect. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, pp 303–317Google Scholar
  81. Hurd CR, Jeanne RL, Nordheim EV (2007) Temporal polyethism and worker specialization in the wasp, Vespula germanica. J Insect Sci 7:1–13.  https://doi.org/10.1673/031.007.4301 CrossRefPubMedGoogle Scholar
  82. Isler K, Van Schaik CP (2006) Metabolic costs of brain size evolution. Biol Lett 2:557–560.  https://doi.org/10.1098/rsbl.2006.0538 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245.  https://doi.org/10.1038/ng1089 CrossRefPubMedGoogle Scholar
  84. Jaffe K, Perez E (1989) Comparative study of brain morphology in ants. Brain Behav Evol 33:25–33CrossRefPubMedGoogle Scholar
  85. Jefferis GSX, Luo L (2005) Development of the olfactory system. In: Gilbert LI (ed) Comprehensive molecular insect science volume 1. Elsevier B.V., Amsterdam, pp 421–463Google Scholar
  86. Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, Inc., New YorkGoogle Scholar
  87. Jerison HJ (1977) The theory of encephalization. Ann N Y Acad Sci 299:146–160.  https://doi.org/10.1111/j.1749-6632.1977.tb41903.x CrossRefPubMedGoogle Scholar
  88. Johnson BR (2010) Division of labor in honeybees: form, function, and proximate mechanisms. Behav Ecol Sociobiol 64:305–316.  https://doi.org/10.1007/s00265-009-0874-7 CrossRefPubMedGoogle Scholar
  89. Kaas JH (2012) The evolution of neocortex in primates. Prog Brain Res 195:91–102.  https://doi.org/10.1016/B978-0-444-53860-4.00005-2 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kamhi JF, Gronenberg W, Robson SKA, Traniello JFA (2016) Social complexity influences brain investment and neural operation costs in ants. Proc R Soc B Biol Sci 283:20161949.  https://doi.org/10.1098/rspb.2016.1949 CrossRefGoogle Scholar
  91. Kaneko K, Ikeda T, Nagai M, Hori S, Umatani C, Tadano H, Ugajin A, Nakaoka T, Paul RK, Fujiyuki T, Shirai K, Kunieda T, Takeuchi H, Kubo T (2013) Novel middle-type Kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis. PLoS One 8:e71732.  https://doi.org/10.1371/journal.pone.0071732 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kaneko K, Suenami S, Kubo T (2016) Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel “middle-type” Kenyon cells. Zool Lett 2:14.  https://doi.org/10.1186/s40851-016-0051-6 CrossRefGoogle Scholar
  93. Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD et al (2015) Genomic signatures of evolutionary transitions from solitary to group living. Science 348:1139–1143.  https://doi.org/10.1126/science.aaa4788 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610–632.  https://doi.org/10.1086/285758 CrossRefGoogle Scholar
  95. Kelber C, Rössler W, Kleineidam CJ (2010) Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri). Dev Neurobiol 70:222–234.  https://doi.org/10.1002/dneu.20782 CrossRefPubMedGoogle Scholar
  96. King AJ, Cowlishaw G (2007) When to use social information: the advantage of large group size in individual decision making. Biol Lett 3:137–139.  https://doi.org/10.1098/rsbl.2007.0017 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kocher SD, Paxton RJ (2014) Comparative methods offer powerful insights into social evolution in bees. Apidologie 45:289–305.  https://doi.org/10.1007/s13592-014-0268-3 CrossRefGoogle Scholar
  98. Kostikova A, Silvestro D, Pearman PB, Salamin N (2016) Bridging inter-and intraspecific trait evolution with a hierarchical Bayesian approach. Syst Biol 65:417–431.  https://doi.org/10.1093/sysbio/syw010 CrossRefPubMedGoogle Scholar
  99. Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino DL (1989) Hippocampal specialization of food-storing birds. Proc Natl Acad Sci USA 86:1388–1392CrossRefPubMedGoogle Scholar
  100. Krubitzer L (2007) The magnificent compromise: cortical field evolution in mammals. Neuron 56:201–208.  https://doi.org/10.1016/j.neuron.2007.10.002 CrossRefPubMedGoogle Scholar
  101. Kudo H, Dunbar RIM (2001) Neocortex size and social network size in primates. Anim Behav 62:711–722.  https://doi.org/10.1006/anbe.2001.1808 CrossRefGoogle Scholar
  102. Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145.  https://doi.org/10.1007/s00441-008-0620-x CrossRefPubMedGoogle Scholar
  103. Lacin H, Truman JW (2016) Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. Elife 5:e13399CrossRefPubMedPubMedCentralGoogle Scholar
  104. Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498:456–462.  https://doi.org/10.1038/nature12319 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Li L, MaBouDi H, Egertová M, Elphick MR, Chittka L, Perry CJ (2017) A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee. Proc Biol Sci 284:20171323.  https://doi.org/10.1098/rspb.2017.1323 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Lihoreau M, Latty T, Chittka L (2012) An exploration of the social brain hypothesis in insects. Front Physiol 3:442.  https://doi.org/10.3389/fphys.2012.00439 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Liu Z, Yang CP, Sugino K, Fu CC, Liu LY, Yao X, Lee LP, Lee T (2015) Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science 350:317–320.  https://doi.org/10.1126/science.aad1886 CrossRefPubMedGoogle Scholar
  108. Lorenzi MC, Caprio P (2000) Nest recognition in neighboring colonies: a comparison of two European species of Polistes wasps (P. dominulus and P. nimphus, Hymenoptera: Vespidae). J Ethol 18:65–68.  https://doi.org/10.1007/s101640070001 CrossRefGoogle Scholar
  109. Mares S, Ash L, Gronenberg W (2005) Brain allometry in bumblebee and honey bee workers. Brain Behav Evol 66:50–61.  https://doi.org/10.1159/000085047 CrossRefPubMedGoogle Scholar
  110. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667.  https://doi.org/10.1086/286013 CrossRefGoogle Scholar
  111. Menzel R (2014) The insect mushroom body, an experience-dependent recoding device. J Physiol Paris 108:84–95.  https://doi.org/10.1016/j.jphysparis.2014.07.004 CrossRefPubMedGoogle Scholar
  112. Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093.  https://doi.org/10.1126/science.1234316 CrossRefPubMedGoogle Scholar
  113. Missbach C, Dweck HKM, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, Grosse-Wilde E (2014) Evolution of insect olfactory receptors. Elife 3:e02115.  https://doi.org/10.7554/eLife.02115 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc B Biol Sci 278:2705–2713CrossRefGoogle Scholar
  115. Molina Y, O’Donnell S (2008) Age, sex, and dominance-related mushroom body plasticity in the paperwasp Mischocyttarus mastigophorus. Dev Neurobiol 68:950–959.  https://doi.org/10.1002/dneu.20633 CrossRefPubMedGoogle Scholar
  116. Montgomery SH, Ott SR (2015) Brain composition in Godyris zavaleta, a diurnal butterfly, reflects an increased reliance on olfactory information. J Comp Neurol 523:869–891.  https://doi.org/10.1002/cne.23711 CrossRefPubMedGoogle Scholar
  117. Montgomery SH, Merrill RM, Ott SR (2016) Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity. J Comp Neurol 524:1747–1769.  https://doi.org/10.1002/cne.23993 CrossRefPubMedGoogle Scholar
  118. Muscedere ML, Gronenberg W, Moreau CS, Traniello JF a (2014) Investment in higher order central processing regions is not constrained by brain size in social insects. Proc Biol Sci 281:20140217.  https://doi.org/10.1098/rspb.2014.0217 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Namiki S, Kanzaki R (2016) Comparative neuroanatomy of the lateral accessory lobe in the insect brain. Front Physiol 7:1–14.  https://doi.org/10.3389/fphys.2016.00244 CrossRefGoogle Scholar
  120. Ng J, Smith SD (2014) How traits shape trees: new approaches for detecting character state-dependent lineage diversification. J Evol Biol 27:2035–2045.  https://doi.org/10.1111/jeb.12460 CrossRefPubMedGoogle Scholar
  121. O’Donnell S, Donlan N, Jones T (2007) Developmental and dominance-associated differences in mushroom body structure in the paper wasp Mischocyttarus mastigophorus. Dev Neurobiol 67:39–46.  https://doi.org/10.1002/dneu.20324 CrossRefPubMedGoogle Scholar
  122. O’Donnell S, Clifford M, Molina Y (2011) Comparative analysis of constraints and caste differences in brain investment among social paper wasps. Proc Natl Acad Sci 108:7107–7112.  https://doi.org/10.1073/pnas.1017566108 CrossRefPubMedGoogle Scholar
  123. O’Donnell S, Bulova SJ, Deleon S, Khodak P, Miller S, Sulger E, Donnell SO, O’Donnell S, Bulova SJ, Deleon S, Khodak P, Miller S, Sulger E (2015) Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera : Vespidae). Proc R Soc B Biol Sci 282:20150791-.  https://doi.org/10.1098/rspb.2015.0791 CrossRefGoogle Scholar
  124. O’Donnell S, Bulova S, Barrett M, von Beeren C (2018) Brain investment under colony-level selection: soldier specialization in Eciton army ants (Formicidae: Dorylinae). BMC Zool 3:3.  https://doi.org/10.1186/s40850-018-0028-3 CrossRefGoogle Scholar
  125. Oettler J, Johnson R (2009) The old ladies of the seed harvester ant Pogonomyrmex Rugosus: foraging performed by two groups of workers. J Insect Behav 22:217–226.  https://doi.org/10.1007/s10905-008-9167-7 CrossRefPubMedGoogle Scholar
  126. Outomuro D, Adams DC, Johansson F (2013) The evolution of wing shape in ornamented-winged damselflies (Calopterygidae, Odonata). Evol Biol 40:300–309.  https://doi.org/10.1007/s11692-012-9214-3 CrossRefGoogle Scholar
  127. Oya S, Kohno H, Kainoh Y, Ono M, Kubo T (2017) Increased complexity of mushroom body Kenyon cell subtypes in the brain is associated with behavioral evolution in hymenopteran insects. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-14174-6 CrossRefGoogle Scholar
  128. Pacala S, Gordon D, Godfray H (1996) Effects of social group size on information transfer and task allocation. Evol Ecol 10:127–165.  https://doi.org/10.1007/BF01241782 CrossRefGoogle Scholar
  129. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884.  https://doi.org/10.1038/44766 CrossRefPubMedGoogle Scholar
  130. Pandazis G (1930) Über die relative Ausbildung der Gehirnzentren bei biologisch verschiedenen Ameisenarten. Zeitschrift für Morphol und Ökol der Tiere 18:114–169.  https://doi.org/10.1007/BF00419207 CrossRefGoogle Scholar
  131. Parker ST (2015) Re-evaluating the extractive foraging hypothesis. New Ideas Psychol 37:1–12.  https://doi.org/10.1016/j.newideapsych.2014.11.001 CrossRefGoogle Scholar
  132. Parker ST, Gibson KR (1977) Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. J Hum Evol 6:623–641.  https://doi.org/10.1016/S0047-2484(77)80135-8 CrossRefGoogle Scholar
  133. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, Diez PA, Heraty J, Kjer KM, Klopfstein S, Meier R et al (2017) Evolutionary history of the hymenoptera. Curr Biol 27:1013–1018.  https://doi.org/10.1016/j.cub.2017.01.027 CrossRefPubMedGoogle Scholar
  134. Pietschker H (1911) Das Gehirn der Ameise. Jenaische Zeitschrift für Naturwiss 47:43–114Google Scholar
  135. Polilov AA (2012) The smallest insects evolve anucleate neurons. Arthropod Struct Dev 41:29–34.  https://doi.org/10.1016/j.asd.2011.09.001 CrossRefPubMedGoogle Scholar
  136. Power ME (1943) The brain of Drosophila melanogaster. J Morphol 72:517–559.  https://doi.org/10.1002/jmor.1050720306 CrossRefGoogle Scholar
  137. Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci 99:4436–4441.  https://doi.org/10.1073/pnas.062041299 CrossRefPubMedGoogle Scholar
  138. Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philos Trans R Soc B Biol Sci 366:1017–1027.  https://doi.org/10.1098/rstb.2010.0342 CrossRefGoogle Scholar
  139. Rehan SM, Toth AL (2015) Climbing the social ladder: the molecular evolution of sociality. Trends Ecol Evol 30:426–433.  https://doi.org/10.1016/j.tree.2015.05.004 CrossRefPubMedGoogle Scholar
  140. Rehan SM, Bulova SJ, O’Donnell S (2015) Cumulative effects of foraging behavior and social dominance on brain development in a facultatively social bee (Ceratina australensis). Brain Behav Evol 85:117–124.  https://doi.org/10.1159/000381414 CrossRefPubMedGoogle Scholar
  141. Retana J, Cerdá X (1991) Behavioral repertoire of the ant Cataglyphis cursor (Hymenoptera: Formicidae): is it possible to elaborate a standard specific one? J Insect Behav 4:139–155.  https://doi.org/10.1007/BF01054608 CrossRefGoogle Scholar
  142. Riveros AJ, Seid MA, Wcislo WT (2012) Evolution of brain size in class-based societies of fungus-growing ants (Attini). Anim Behav 83:1043–1049.  https://doi.org/10.1016/j.anbehav.2012.01.032 CrossRefGoogle Scholar
  143. Román A-C, Vicente-Page J, Pérez-Escudero A, Carvajal-González JM, Fernández-Salguero PM, de Polavieja GG (2018) Histone H4 acetylation regulates behavioral inter-individual variability in zebrafish. Genome Biol 19:55.  https://doi.org/10.1186/s13059-018-1428-y CrossRefPubMedPubMedCentralGoogle Scholar
  144. Romiguier J, Lourenco J, Gayral P, Faivre N, Weinert LA, Ravel S, Ballenghien M, Cahais V, Bernard A, Loire E, Keller L, Galtier N (2014) Population genomics of eusocial insects: the costs of a vertebrate-like effective population size. J Evol Biol 27:593–603.  https://doi.org/10.1111/jeb.12331 CrossRefPubMedGoogle Scholar
  145. Rosati AG (2017) Foraging cognition: reviving the ecological intelligence hypothesis. Trends Cogn Sci 21:691–702.  https://doi.org/10.1016/j.tics.2017.05.011 CrossRefPubMedGoogle Scholar
  146. Rössler W, Groh C (2012) Plasticity of synaptic microcircuits in the mushroom-body calyx of the honey bee. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer, Dordrecht, pp 141–153CrossRefGoogle Scholar
  147. Roth G, Dicke U (2012) Evolution of the brain and intelligence in primates, 1st edn. Elsevier B.V, AmsterdamGoogle Scholar
  148. Rybak J, Kuß A, Lamecker H, Zachow S, Hege H-C, Lienhard M, Singer J, Neubert K, Menzel R (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front Syst Neurosci 4:1–15.  https://doi.org/10.3389/fnsys.2010.00030 CrossRefGoogle Scholar
  149. Schluter D, Price T, Mooers A, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51:1699–1711.  https://doi.org/10.1111/j.1558-5646.1997.tb05095.x CrossRefPubMedGoogle Scholar
  150. Schoenemann PT (2013) Hominid brain evolution. In: A companion to paleoanthropology. Blackwell Publishing Ltd, Oxford, pp 136–164CrossRefGoogle Scholar
  151. Schürmann FW (1974) Bemerkungen zur Funktion der Corpora Pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19:406–432.  https://doi.org/10.1007/BF00234464 CrossRefPubMedGoogle Scholar
  152. Schürmann FW (2016) Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. Arthropod Struct Dev 45:399–421.  https://doi.org/10.1016/j.asd.2016.08.005 CrossRefPubMedGoogle Scholar
  153. Seid MA, Traniello JAFA (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60:631–644.  https://doi.org/10.1007/s00265-006-0207-z CrossRefGoogle Scholar
  154. Seid MA, Castillo A, Wcislo WT (2011) The allometry of brain miniaturization in ants. Brain Behav Evol.  https://doi.org/10.1159/000322530 CrossRefPubMedGoogle Scholar
  155. Sempo G, Detrain C (2004) Between-species differences of behavioural repertoire of castes in the ant genus Pheidole: a methodological artefact? Insectes Soc 51:48–54.  https://doi.org/10.1007/s00040-003-0704-2 CrossRefGoogle Scholar
  156. Sharkey CR, Fujimoto MS, Lord NP, Shin S, McKenna DD, Suvorov A, Martin GJ, Bybee SM (2017) Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-00061-7 CrossRefGoogle Scholar
  157. Smith AR, Wcislo WT, O’Donnell S (2007) Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae). Behav Ecol Sociobiol 61:1111–1120.  https://doi.org/10.1007/s00265-006-0344-4 CrossRefGoogle Scholar
  158. Smith AR, Seid MA, Jiménez LC, Wcislo WT (2010) Socially induced brain development in a facultatively eusocial sweat bee Megalopta genalis (Halictidae). Proc Biol Sci 277:2157–2163.  https://doi.org/10.1098/rspb.2010.0269 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Smith DB, Bernhardt G, Raine NE, Abel RL, Sykes D, Ahmed F, Pedroso I, Gill RJ (2016) Exploring miniature insect brains using micro-CT scanning techniques. Sci Rep 6:21768.  https://doi.org/10.1038/srep21768 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Snell-Rood EC, Davidowitz G, Papaj DR (2011) Reproductive tradeoffs of learning in a butterfly. Behav Ecol 22:291–302.  https://doi.org/10.1093/beheco/arq169 CrossRefGoogle Scholar
  161. Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423.  https://doi.org/10.1002/dneu.20785 CrossRefPubMedGoogle Scholar
  162. Strausfeld NJ (1976) Atlas of an insect brain. Springer, BerlinCrossRefGoogle Scholar
  163. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  164. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291.  https://doi.org/10.1002/cne.21948 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Takemura S, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S et al (2017) A connectome of a learning and memory center in the adult Drosophila brain. Elife.  https://doi.org/10.7554/eLife.26975 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Tallamy DW, Schaefer C (1997) Maternal care in the Hemiptera: ancestry, alternatives, and current adaptive value. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press Cambridge, pp 94–115Google Scholar
  167. Thomas ML, Elgar M (2003) Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90:88–92.  https://doi.org/10.1007/s00114-002-0396-x CrossRefPubMedGoogle Scholar
  168. Thomas ML, Framenau VW (2005) Foraging decisions of individual workers vary with colony size in the greenhead ant Rhytidoponera metallica (Formicidae, Ectatomminae). Insectes Soc 52(1):26–30CrossRefGoogle Scholar
  169. Thum AS, Gerber B (2019) Connectomics and function of a memory network: the mushroom body of larval Drosophila. Curr Opin Neurobiol 54:146–154.  https://doi.org/10.1016/j.conb.2018.10.007 CrossRefGoogle Scholar
  170. Tibbetts EA (2004) Complex social behaviour can select for variability in visual features: a case study in Polistes wasps. Proc R Soc B Biol Sci 271:1955–1960.  https://doi.org/10.1098/rspb.2004.2784 CrossRefGoogle Scholar
  171. Torres VO, Montagna TS, Raizer J, Antonialli-Junior WF (2012) Division of labor in colonies of the eusocial wasp, Mischocyttarus consimilis. J Insect Sci 12:21–47.  https://doi.org/10.1673/031.012.2101 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Traniello JFA (1978) Caste in a primitive ant: absence of age polyethism in Amblyopone. Science 202:770–772.  https://doi.org/10.1126/science.202.4369.770 CrossRefPubMedGoogle Scholar
  173. Trujillo-Cenóz O, Melamed J (1962) Electron microscope observations on the calyces of the insect brain. J Ultrastruct Res 7:389–398.  https://doi.org/10.1016/S0022-5320(62)90035-7 CrossRefPubMedGoogle Scholar
  174. Truman JW (1990) Metamorphosis of the central nervous system of Drosophila. J Neurobiol 21:1072–1084.  https://doi.org/10.1002/neu.480210711 CrossRefPubMedGoogle Scholar
  175. Tschinkel WR (1988) Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 22:103–115.  https://doi.org/10.1007/BF00303545 CrossRefGoogle Scholar
  176. Turillazzi S (1989) The origin and evolution of social life in the Stenogastrinae (Hymenoptera, Vespidae). J Insect Behav 2:649–661.  https://doi.org/10.1073/pnas.0610140104 CrossRefGoogle Scholar
  177. Urbach R, Technau GM (2003) Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod Struct Dev 32:103–123.  https://doi.org/10.1016/S1467-8039(03)00042-2 CrossRefPubMedGoogle Scholar
  178. Van Nest BN, Wagner AE, Marrs GS, Fahrbach SE (2017) Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task. Dev Neurobiol 77:1057–1071.  https://doi.org/10.1002/dneu.22492 CrossRefPubMedGoogle Scholar
  179. Van Der Woude E, Smid HM, Chittka L, Huigens ME (2013) Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain Behav Evol.  https://doi.org/10.1159/000345945 CrossRefPubMedGoogle Scholar
  180. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066.  https://doi.org/10.1371/journal.pcbi.1001066 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Walker R, Burger O, Wagner J, Von Rueden CR (2006) Evolution of brain size and juvenile periods in primates. J Hum Evol 51:480–489.  https://doi.org/10.1016/j.jhevol.2006.06.002 CrossRefPubMedGoogle Scholar
  182. Ward PS (2014) The phylogeny and evolution of ants. Annu Rev Ecol Evol Syst 45:23–43.  https://doi.org/10.1146/annurev-ecolsys-120213-091824 CrossRefGoogle Scholar
  183. Wells RS, De Waal FBM, Tyack P (2003) Animal social complexity: intelligence, culture, and individualized societies. Harvard University Press, CambridgeGoogle Scholar
  184. Wetterer JK (1994) Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98:235–238.  https://doi.org/10.1007/BF00341478 CrossRefPubMedGoogle Scholar
  185. Wetterer JK (1999) The ecology and evolution of worker size distribution in leaf cutting ants (Hymenoptera: Formicidae). Sociobiology 34:119–144Google Scholar
  186. Whiting MF, Bradler S, Maxwell T (2003) Ups and downs of evolution Insects that lost: then re-evolved—the ability to fly. Nature 421:264–267.  https://doi.org/10.1038/nature01274.1 CrossRefPubMedGoogle Scholar
  187. Williams NM, Regetz J, Kremen C (2012) Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93:1049–1058CrossRefPubMedGoogle Scholar
  188. Wills BD, Powell S, Rivera MD, Suarez AV (2018) Correlates and consequences of worker polymorphism in ants. Annu Rev Entomol.  https://doi.org/10.1146/annurev-ento-020117-043357 CrossRefPubMedGoogle Scholar
  189. Wilson EO (1953) The origin and evolution of polymorphism in ants. Q Rev Biol 28:136–156.  https://doi.org/10.1086/399512 CrossRefPubMedGoogle Scholar
  190. Wilson EO, Hölldobler B (2005) Eusociality: origin and consequences. Proc Natl Acad Sci U S A 102:13367–13371.  https://doi.org/10.1073/pnas.0505858102 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Withers GS, Fahrbach SE, Robinson GE (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364:238CrossRefPubMedGoogle Scholar
  192. Witthöft W (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z Morph Tiere 61:160–184CrossRefGoogle Scholar
  193. Wittwer B, Hefetz A, Simon T, Murphy LEK, Elgar MA, Pierce NE, Kocher SD (2017) Solitary bees reduce investment in communication compared with their social relatives. Proc Natl Acad Sci 114:6569–6574.  https://doi.org/10.1073/pnas.1620780114 CrossRefPubMedGoogle Scholar
  194. Wood HM, Parkinson DY, Griswold CE, Gillespie RG, Elias DO (2016) Repeated evolution of power-amplified predatory strikes in trap-jaw spiders. Curr Biol 26:1057–1061.  https://doi.org/10.1016/j.cub.2016.02.029 CrossRefPubMedGoogle Scholar
  195. Zhang K, Guo JZ, Peng Y, Xi W, Guo A (2007) Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science 316:1901–1904.  https://doi.org/10.1126/science.1137357 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of ArizonaTucsonUSA
  2. 2.Neuroscience Interdisciplinary Graduate ProgramUniversity of ArizonaTucsonUSA

Personalised recommendations