Honey bees possess a polarity-sensitive magnetoreceptor

Original Paper

Abstract

Honey bees, Apis mellifera, exploit the geomagnetic field for orientation during foraging and for alignment of their combs within hives. We tested the hypothesis that honey bees sense the polarity of magnetic fields. We created an engineered magnetic anomaly in which the magnetic field generally either converged toward a sugar reward in a watch glass, or away from it. After bees in behavioral field studies had learned to associate this anomaly with a sugar water reward, we subjected them to two experiments performed in random order. In both experiments, we presented bees with two identical sugar water rewards, one of which was randomly marked by a magnetic field anomaly. During the control experiment, the polarity of the magnetic field anomaly was maintained the same as it was during the training session. During the treatment experiment, it was reversed. We predicted that bees would not respond to the altered anomaly if they were sensitive to the polarity of the magnetic field. Our findings that bees continued to respond to the magnetic anomaly when its polarity was in its unaltered state, but did not respond to it when its polarity was reversed, support the hypothesis that honey bees possess a polarity-sensitive magnetoreceptor.

Keywords

Honey bees Apis mellifera Magnetoreception Inclination compass Polarity compass 

References

  1. Arendse MC (1978) Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus. Nature 274:358–362. doi:10.1038/274358a0 CrossRefGoogle Scholar
  2. Arendse MC, Vrins JCM (1975) Magnetic orientation and its relation to photic orientation in T. molitor. Neth J Zool 25:407–437CrossRefGoogle Scholar
  3. Crosser MS, Scott S, Clark A, Wilt PM (2010) On the magnetic field near the center of Helmholtz coils. Rev Sci Instrum 81:084701CrossRefPubMedGoogle Scholar
  4. Davila AF, Fleissner G, Winklhofer M, Petersen N (2003) A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 28:647–652. doi:10.1016/S1474-7065(03)00118-9 CrossRefGoogle Scholar
  5. De Jong D (1982) Orientation of comb building by honeybees. J Comp Physiol A 147:495–501CrossRefGoogle Scholar
  6. Desoil M, Gillis P, Gossuin Y, Pankhurst QA, Hautot D (2005) Definitive identification of magnetite nanoparticles in the abdomen of honeybees Apis mellifera. J Phys Conf Ser 17:45–49. doi:10.1088/1742-6596/17/1/007 CrossRefGoogle Scholar
  7. Firester AH (1966) Design of square Helmholtz coil systems. Rev Sci Instrum 37:1264CrossRefGoogle Scholar
  8. Frier H, Edwards E, Smith C, Neale S, Collett TS (1996) Magnetic compass cues and visual pattern learning in honeybees. J Exp Biol 199:1353–1361PubMedGoogle Scholar
  9. Fuxjager MJ, Eastwood BS, Lohmann KJ (2011) Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway. J Exp Biol 214:2504–2508. doi:10.1242/jeb.055921 CrossRefPubMedGoogle Scholar
  10. Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028. doi:10.1126/science.201.4360.1026 CrossRefPubMedGoogle Scholar
  11. Griffiths DJ (2013) Introduction to electrodynamics, 4th edn. Prentice-Hall, Upper SaddleGoogle Scholar
  12. Hsu CY, Chan YP (2011) Identification and localization of proteins associated with biomineralization in the iron deposition vesicles of honeybees (Apis mellifera). PLoS One. doi:10.1371/journal.pone.0019088 Google Scholar
  13. Hsu CY, Li CW (1993) The ultrastructure and formation of iron granules in the honeybee (Apis mellifera). J Exp Biol 180:1–13Google Scholar
  14. Hsu CY, Li CW (1994) Magnetoreception in honeybees. Science 265:95–97. doi:10.1126/science.265.5168.95 CrossRefPubMedGoogle Scholar
  15. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712. doi:10.1038/nrn1745 CrossRefPubMedGoogle Scholar
  16. Johnsen S, Lohmann KJ (2008) Magnetoreception in animals. Phys Today 61:29–35. doi:10.1063/1.2897947 CrossRefGoogle Scholar
  17. Kirschvink JL, Kobayashi-Kirschvink A (1991) Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Integr Comp Biol 31:169–186. doi:10.1093/icb/31.1.169 Google Scholar
  18. Lambinet V, Hayden ME, Reigel K, Gomis S, Gries G (2017) Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proc R Soc B 284:20162873. doi:10.1098/rspb.2016.2873 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liang C-H, Chuang C-L, Jiang J-A, Yang E-C (2016) Magnetic sensing through the abdomen of the honey bee. Sci Rep 6:1–7. doi:10.1038/srep23657 CrossRefGoogle Scholar
  20. Lohmann KJ (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol 155:37–49PubMedGoogle Scholar
  21. Lohmann KJ, Lohmann CMF (1994) Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J Exp Biol 194:23–32PubMedGoogle Scholar
  22. Lohmann KJ, Lohmann CMF (1996) Detection of magnetic field intensity by sea turtles. Nature 380:59–61. doi:10.1038/380059a0 CrossRefGoogle Scholar
  23. Lohmann KJ, Willows AOD (1987) Lunar-modulated geomagnetic orientation by a marine mollusk. Sci AAAs 235:331–334Google Scholar
  24. Lohmann K, Pentcheff N, Nevitt G, Stetten G, Zimmer-Faust R, Jarrard H, Boles L (1995) Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J Exp Biol 198:2041–2048PubMedGoogle Scholar
  25. Lohmann KJ, Putman NF, Lohmann CMF (2008) Geomagnetic imprinting: a unifying hypothesis of long-distance natal homing in salmon and sea turtles. PNAS 105:19096–19101CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lohmann KJ, Putman NF, Lohmann CMF (2012) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:336–342. doi:10.1016/j.conb.2011.11.005 CrossRefPubMedGoogle Scholar
  27. Mann S, Sparks NH, Walker MM, Kirschvink JL (1988) Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 140:35–49PubMedGoogle Scholar
  28. Marhold S, Wiltschko W, Burda H (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423. doi:10.1007/s001140050422 CrossRefGoogle Scholar
  29. Phillips JB (1977) Use of the earth’s magnetic field by orienting cave salamanders (Eurycea lucifuga). J Comp Physiol A 121:273–288. doi:10.1007/BF00609616 CrossRefGoogle Scholar
  30. Phillips JB, Freake MJ, Fischer JH, Borland SC (2002) Behavioral titration of a magnetic map coordinate. J Comp Physiol A 188:157–160. doi:10.1007/s00359-002-0286-x CrossRefGoogle Scholar
  31. Putman NF, Lohmann KJ, Putman EM, Quinn TP, Klimley AP, Noakes DLG (2013) Evidence for geomagnetic imprinting as a homing mechanism in pacific salmon. Curr Biol 23:312–316. doi:10.1016/j.cub.2012.12.041 CrossRefPubMedGoogle Scholar
  32. Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol A 137:243–248. doi:10.1007/BF00657119 CrossRefGoogle Scholar
  33. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718. doi:10.1016/S0006-3495(00)76629-X CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thalau P, Holtkamp-Rötzler E, Fleissner G, Wiltschko W (2007) Homing pigeons (Columba livia f. domestica) can use magnetic cues for locating food. Naturwissenschaften 94:813–819. doi:10.1007/s00114-007-0259-6 CrossRefPubMedGoogle Scholar
  35. Vácha M, Soukopova H (2004) Magnetic orientation in the mealworm beetle Tenebrio and the effect of light. J Exp Biol 207:1241–1248. doi:10.1242/jeb.00874 CrossRefPubMedGoogle Scholar
  36. Vácha M, Drštková D, Půžová T (2008) Tenebrio beetles use magnetic inclination compass. Naturwissenschaften 95:761–765. doi:10.1007/s00114-008-0377-9 CrossRefPubMedGoogle Scholar
  37. Válková T, Vácha M (2012) How do honeybees use their magnetic compass? Can they see the North? Bull Entomol Res 102:461–467. doi:10.1017/S0007485311000824 CrossRefPubMedGoogle Scholar
  38. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DMS (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207–S225. doi:10.1098/rsif.2009.0526.focus CrossRefPubMedPubMedCentralGoogle Scholar
  39. Walker MM, Bitterman ME (1985) Conditioned responding to magnetic fields by honeybees. J Comp Physiol 157:67–71. doi:10.1007/Bf00611096 CrossRefGoogle Scholar
  40. Walker M, Bitterman M (1989a) Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145:489–494Google Scholar
  41. Walker M, Bitterman M (1989b) Attached magnets impair magnetic field discrimination by honeybees. J Exp Biol 141:447–451Google Scholar
  42. Wang Y, Pan Y, Parsons S, Walker M, Zhang S (2007) Bats respond to polarity of a magnetic field. Proc R Soc B 274(1627):2901–2905. doi:10.1098/rspb.2007.0904 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wiltschko W (1980) The earth’s magnetic field and bird orientation. TINS 3:140–144Google Scholar
  44. Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Sci New Ser 176:62–64Google Scholar
  45. Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89:445–452. doi:10.1007/s00114-002-0356-5 CrossRefPubMedGoogle Scholar
  46. Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65:257–272. doi:10.1006/anbe.2003.2054 CrossRefGoogle Scholar
  47. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693. doi:10.1007/s00359-005-0627-7 CrossRefGoogle Scholar
  48. Wiltschko R, Wiltschko W (2006) Magnetoreception. BioEssays 28:157–168. doi:10.1002/bies.20363 CrossRefPubMedGoogle Scholar
  49. Winklhofer M, Kirschvink JL (2010) A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 7:S273–S289. doi:10.1098/rsif.2009.0435.focus CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yoshii T, Ahmad M, Helfrich-Förster C (2009) Cryptochrome mediates light-dependent magnetosensitivity of Drosophilas circadian clock. PLoS Biol 7:e1000086. doi:10.1371/journal.pbio.1000086 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of PhysicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations