Advertisement

Journal of Comparative Physiology A

, Volume 203, Issue 11, pp 879–889 | Cite as

How the humble insect brain became a powerful experimental model system

  • Heinrich ReichertEmail author
REVIEW - HISTORY

Abstract

In the 21st century, neurobiological studies focused on the insect brain are revealing unprecedented insight into the molecular, cellular, developmental, and circuit aspects of brain organization and function, notably in the genetic model system of Drosophila melanogaster. Underlying this accelerating progress in understanding the insect brain is a century-long history of ground breaking experimental investigation, methodological advance, and conceptual insight catalyzed by the integration of two emerging research fields, neuroscience and genetics. This review traces some of the key early steps in this remarkable historical scientific adventure of exploring the brain of “these apparently humble representatives of life”.

Keywords

Neurogenetics Cajal Morgan Genetic toolkit Identified neurons 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefPubMedGoogle Scholar
  2. Anderson H, Edwards JS, Palka J (1980) Developmental neurobiology of invertebrates. Ann Rev Neurosci 3:97–139CrossRefPubMedGoogle Scholar
  3. Arendt D, Nübler-Jung K (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126:2309–2325PubMedGoogle Scholar
  4. Bacon JP, Murphey RK (1984) Receptive fields of cricket giant interneurons are related to their dendritic structure. J Physiol 352:601–623CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bate CM (1976a) Pioneer neurons in an insect embryo. Nature 260:54–56CrossRefPubMedGoogle Scholar
  6. Bate CM (1976b) Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123PubMedGoogle Scholar
  7. Bentley D, Keshishian H (1982) Pathfindng by peripheral pioneer neurons in grasshoppers. Science 218:1082–1088CrossRefPubMedGoogle Scholar
  8. Benzer S (1973) Genetic dissection of behavior. Sci Am 229:24–37CrossRefPubMedGoogle Scholar
  9. Bonini NM (2008) A tribute to Seymour Benzer. Genetics 180:1265–1273CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  11. Bullock TH (2000) Revisiting the concept of identifiable neurons. Brain Behav Evol 55:236–240CrossRefPubMedGoogle Scholar
  12. Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol II. WH Freeman, San Francisco, pp 801–1270Google Scholar
  13. Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  14. Cajal SR (1899–1904) Textura del sistema nerviosa del hombre y vertebrados. Nicolás Moya [English edition (1995): Histology of the nervous system of man and vertebrates. Oxford University Press, New York and Oxford]Google Scholar
  15. Cajal SR (1918) Observaciones sobre la estructura de los ocelos y vias nerviosas ocelares de algunos insectos. Trab Lab Invest Biol Univ Madrid 16:109–139Google Scholar
  16. Cajal SR (1921) Las sensaciones de las hormigas. Arch Neurobiol Psicol Fisiol Neurol Psiquiat 2:321–337Google Scholar
  17. Cajal SR (1933) Neuronismo o reticularismo? Las pruebas objectivas de la unidad anatómica de las celulas nerviosas. Arch Neurobiol 13:1–144Google Scholar
  18. Cajal SR (1937) Recollections of my life. The MIT Press, CambridgeGoogle Scholar
  19. Cajal SR, Sánchez DS (1915) Contribution al conocimiento de los centros nerviosos de los insectos. Trab Lab Invest Biol Univ Madrid 13:1–68Google Scholar
  20. Chisholm A, Tessier-Lavigne M (1999) Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol 9:603–615CrossRefPubMedGoogle Scholar
  21. Comer CM, Robertson RM (2001) Identified nerve cells and insect behavior. Prog Neurobiol 63:409–439CrossRefPubMedGoogle Scholar
  22. Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, LondonCrossRefGoogle Scholar
  23. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  24. De Carlos JA, Borrell J (2007) A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience. Brain Res Rev 55:8–16CrossRefPubMedGoogle Scholar
  25. Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964CrossRefPubMedGoogle Scholar
  26. Doe CQ, Skeath JB (1996) Neurogenesis in the insect central nervous system. Curr Opin Neurobiol 6:18–24CrossRefPubMedGoogle Scholar
  27. Doe CQ, Technau GM (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci 16:510–514CrossRefPubMedGoogle Scholar
  28. Dujardin F (1850) Mémoire sur le système nerveux des insects. Ann Sci Nat Zool 14:195–206Google Scholar
  29. Fischbach KF, Dietrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475CrossRefGoogle Scholar
  30. Flögel JHL (1878) Ueber den einheitlichen Bau des Gehirns in den verschiedenen Insekten Ordnungen. Z Wiss Zool (Suppl) 30:556–592Google Scholar
  31. Forel A (1874) Les fourmis de la Suisse. Nouv Mem Soc Helv Sci Nat 26:1–200Google Scholar
  32. Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341–377CrossRefPubMedGoogle Scholar
  33. Goodman CS, Bastiani MJ (1984) How embryonic nerve cells recognize one another. Sci Am 251:58–66CrossRefPubMedGoogle Scholar
  34. Goodman CS, Doe CQ (1994) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila, vol 1. Cold Spring Harbor Press, New York, pp 1131–1206Google Scholar
  35. Goodman CS, Spitzer NC (1979) Embryonic development of identified neurons: differentiation from neuroblast to neuron. Nature 280:208–214CrossRefPubMedGoogle Scholar
  36. Goodman CS, Bastiani MJ, Doe CQ, du Lac S, Helfand SL, Kuwada JY, Thomas JB (1984) Cell recognition during neuronal development. Science 225:1271–1279CrossRefPubMedGoogle Scholar
  37. Grenningloh G, Goodman CS (1992) Pathway recognition by neuronal growth cones: genetic analysis of neural cell adhesion molecules in Drosophila. Curr Opin Neurobiol 2:42–47CrossRefPubMedGoogle Scholar
  38. Hall JC, Greenspan RJ (1979) Genetic analysis of Drosophila neurobiology. Ann Rev Genet 13:127–195CrossRefPubMedGoogle Scholar
  39. Hirth F, Reichert H (1999) Conserved genetic programs in insect and mammalian brain development. BioEssays 21:677–684CrossRefPubMedGoogle Scholar
  40. Hotta Y, Benzer S (1972) Mapping of behaviour in Drosophila mosaics. Nature 240:527–535CrossRefPubMedGoogle Scholar
  41. Howse PE (1975) Brain structure and behavior in insects. Annu Rev Entomol 20:359–379CrossRefPubMedGoogle Scholar
  42. Hoyle G (1977) Identified neurons and behavior in arthropods. Plenum Press, New YorkCrossRefGoogle Scholar
  43. Hoyle G (1983) On the way to neuroethology: the identified neuron approach. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 9–25CrossRefGoogle Scholar
  44. Huber F, Thorson J (1985) Cricket auditory communication. Sci Am 253:60–68CrossRefGoogle Scholar
  45. Kenny DE, Borisy GG (2009) Thomas Hunt Morgan at the marine biological laboratory: naturalist and experimentalist. Genetics 181:841–846CrossRefGoogle Scholar
  46. Keshishian H, Broadie K, Chiba A, Bate M (1996) The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu Rev Neurosci 19:545–575CrossRefPubMedGoogle Scholar
  47. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci (USA) 68:2112–2116CrossRefGoogle Scholar
  48. Kuwada JY, Goodman CS (1985) Neuronal determination during embryonic development of the grasshopper nervous system. Dev Biol 110:114–126CrossRefPubMedGoogle Scholar
  49. Lanfranco RC, Canales-Johnson A, Huepe D (2014) Hypnoanalgesia and the study of pain experience: from Cajal to modern neuroscience. Front Psychol 5:1126CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lawrence P (1992) The making of a fly. Blackwell Scientific Publications, OxfordGoogle Scholar
  51. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461CrossRefPubMedGoogle Scholar
  52. Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076PubMedGoogle Scholar
  53. Lewis E (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570CrossRefPubMedGoogle Scholar
  54. Luo L (2007) Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Rev 55:220–227CrossRefPubMedPubMedCentralGoogle Scholar
  55. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mann RS, Morata G (2000) The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 16:243–271CrossRefPubMedGoogle Scholar
  57. Meinertzhagen IA (1993) The synaptic populations of the fly’s optic neuropil and their dynamic regulation: parallels with the vertebrate retina. Prog Retin Res 12:13–39CrossRefGoogle Scholar
  58. Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122CrossRefPubMedGoogle Scholar
  59. Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The mechanism of mendelian heredity. Henry Holt, New YorkCrossRefGoogle Scholar
  60. Morgan TH, Sturtevant AH, Bridges CB (1920) The evidence for the linear order of the genes. Proc Natl Acad Sci USA 4(162):164Google Scholar
  61. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801CrossRefPubMedGoogle Scholar
  62. Nüsslein-Volhard C, Kluding H, Jürgens G (1985) Genes affecting the seghmental subdivision of the Drosophila embryo. Cold Spring Harb Symp Quant Biol 50:145–154CrossRefPubMedGoogle Scholar
  63. O’Shea M, Rowell CHF (1977) Complex neural integration and identified interneurons in the locust brain. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum, New York, pp 307–328CrossRefGoogle Scholar
  64. Olsen SR, Wilson RI (2008) Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 31:512–520CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297CrossRefPubMedGoogle Scholar
  66. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14:367–379CrossRefPubMedGoogle Scholar
  67. Reichert H, Simeone A (1999) Conserved usage of gap and homeotic genes in patterning the CNS. Curr Opin Neurobiol 9:589–595CrossRefPubMedGoogle Scholar
  68. Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315:142–144CrossRefGoogle Scholar
  69. Robertson RM (1987) Insect neurons: synaptic interactions, circuits and the control of behavior. In: Ali MA (ed) Nervous systems of invertebrates. Plenum Publishing, New York, pp 393–442CrossRefGoogle Scholar
  70. Rubin GM (1988) Drosophila melanogaster as an experimental organism. Science 240:1453–1459CrossRefPubMedGoogle Scholar
  71. Sanchez DS (1925) L’histogenèse dans les centres nerveux des insects pendant les metamorphoses. Travaux du Laboratoire de Recherches Biologiques de l’Université Madrid 23:29–52Google Scholar
  72. Seeger MA (1994) Genetic and molecular dissection of axon pathfinding in the Drosophila nervous system. Curr Opin Neurobiol 4:56–62CrossRefPubMedGoogle Scholar
  73. Selverston AI, Kleindienst HU, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292PubMedGoogle Scholar
  74. Simpson JH (2009) Mapping and manipulating neural circuits in the fly brain. Adv Genet 65:80–143Google Scholar
  75. Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays 21:922–931CrossRefPubMedGoogle Scholar
  76. Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15CrossRefPubMedGoogle Scholar
  77. Strausfeld NJ (1976) Atlas of an insect brain. Springer, BerlinCrossRefGoogle Scholar
  78. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Harvard University Press, CambridgeGoogle Scholar
  79. Technau GM (ed) (2008) Brain development in Drosophila. In: Advances in experimental medicine and biology, vol 628. Landes Bioscience, AustinGoogle Scholar
  80. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133CrossRefPubMedGoogle Scholar
  81. Thomas JB (1998) Axon guidance: crossing the midline. Curr Biol 8:R102–R104CrossRefPubMedGoogle Scholar
  82. Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207CrossRefPubMedGoogle Scholar
  83. Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wieschaus E, Nüsslein-Volhard C (2016) The Heidelberg screen for pattern mutants of Drosophila: a personal account. Annu Rev Cell Dev Biol 32:1–46CrossRefPubMedGoogle Scholar
  85. Younossi-Hartenstein A, Nassif C, Green P, Hartenstein V (1996) Early neurogenesis of the Drosophila brain. J Comp Neurol 370:313–329CrossRefPubMedGoogle Scholar
  86. Zacharias D, Williams JLD, Meier T, Reichert H (1993) Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo. Development 118:941–955Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Biozentrum, University of BaselBaselSwitzerland

Personalised recommendations