Journal of Comparative Physiology A

, Volume 203, Issue 12, pp 973–982 | Cite as

Short-term peripheral sensitization by brief exposure to pheromone components in Spodoptera littoralis

  • S. López
  • A. Guerrero
  • M. J. Bleda
  • C. Quero
Original Paper


In insects, the olfactory system displays a high degree of plasticity. In Spodoptera littoralis, pre-exposure of males to the sex pheromone has been shown to increase the sensitivity of the olfactory sensory neurons at peripheral level. In this study, we have investigated this sensitization effect by recording the electroantennographic responses of male antennae to the major sex pheromone component (Z,E)-9,11-tetradecadienyl acetate and to the minor components (Z,E)-9,12-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate. Responses to the conjugated diene acetate at 1 and 10 µg and to the unconjugated ester at 10 µg at three different times (11, 22 and 33 min) after pre-exposure (T = 0 min) were significantly higher than those at T = 0, whereas no increase of sensitivity to the pheromone was elicited by any dose of the minor monoene acetate. In addition, pre-exposed antennae to sub-threshold amounts (0.1, 1 and 10 ng) of the major pheromone component also induced an increased response to the chemical at different times (5 and 15 min) after exposure. Our results revealed that pre-exposed isolated antennae display a short-term higher sensitivity at the peripheral level when compared to naive antennae. In addition, we provide evidence of a peripheral sensitization mediated not only by the major pheromone component, but also by the minor unconjugated diene acetate, and the induction of this sensitivity appears to be dependent on the pre-exposure dose and the time span between pre-exposure and subsequent recordings. Possible implications of the sensitization effect displayed by the minor component for a more effective discrimination of the pheromone bouquets of other closely related species are highlighted.


Sensitization Spodoptera littoralis Pheromone Electroantennography 



We gratefully acknowledge MINECO for financial support (project AGL2015-66469-R) with assistance from the European Regional Development Fund.


  1. Abrieux A, Mhamdi A, Rabhi KK, Egon J, Debernard S, Duportets L, Tricoire-Leignel H, Anton S, Gadenne C (2016) An insecticide further enhances experience-dependent increased behavioural responses to sex pheromone in a pest insect. PLoS One 11(11):e0167469. doi: 10.1371/journal.pone.0167469 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acín P, Rosell G, Guerrero A, Quero C (2010) Sex pheromone of the Spanish population of the beet armyworm Spodoptera exigua. J Chem Ecol 36(7):778–786. doi: 10.1007/s10886-010-9817-z CrossRefPubMedGoogle Scholar
  3. Anderson P, Sadek MM, Hansson BS (2003) Pre-exposure modulates attraction to sex pheromone in a moth. Chem Senses 28(4):285–291. doi: 10.1093/chemse/28.4.285 CrossRefPubMedGoogle Scholar
  4. Anderson P, Hansson B, Nilsson U, Han Q, Sjoholm M (2007) Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem Senses 32:483–491. doi: 10.1093/chemse/bjm017 CrossRefPubMedGoogle Scholar
  5. Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav Brain Res 206(2):236–239. doi: 10.1016/j.bbr.2009.09.023 CrossRefPubMedGoogle Scholar
  6. Bartell RJ, Lawrence LA (1973) Reduction in responsiveness of males of Epiphyas postvittana (Lepidoptera) to sex pheromone following previous brief pheromonal exposure. J Insect Physiol 19(4):845–855. doi: 10.1016/0022-1910(73)90156-X CrossRefGoogle Scholar
  7. Bernays EA, Chapman RF (1994) Effects of experience. In: Miller TA, van Emden HS (eds) Host-plant selection by phytophagous insects, contemporary topics in entomology, vol 2. Springer, New York. pp 206–229. doi: 10.1007/b102508
  8. Binyameen M, Anderson P, Ignell R, Seada MA, Hansson BS, Schlyter F (2012) Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: differences in sensitivity and temporal characteristics. Chem Senses 37:613–629CrossRefPubMedGoogle Scholar
  9. Burdfield-Steel ER, Shuker DM (2011) Reproductive interference. Curr Biol 21(12):R450–R451. doi: 10.1016/j.cub.2011.03.063 CrossRefPubMedGoogle Scholar
  10. Daly KC, Figueredo AJ (2000) Habituation of sexual response in male Heliothis moths. Physiol Entomol 25(2):180–190. doi: 10.1046/j.1365-3032.2000.00184.x CrossRefGoogle Scholar
  11. Das S, Sadanandappa MK, Dervan A, Larkin A, Lee JA, Sudhakaran IP, Priya R, Heidari R, Holohan EE, Pimentel A, Gandhi A, Ito K, Sanyal S, Wang JW, Rodrigues V, Ramaswami M (2011) Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci USA 108(36):E646–E654. doi: 10.1073/pnas.1106411108 CrossRefPubMedPubMedCentralGoogle Scholar
  12. de Fouchier A, Sun X, Monsempes C, Mirabeau O, Jacquin-Joly E, Montagné N (2015) Evolution of two receptors detecting the same pheromone compound in crop pest moths of the genus Spodoptera. Front Ecol Evol 3:95. doi: 10.3389/fevo.2015.00095 CrossRefGoogle Scholar
  13. Duerr J, Quinn W (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Nat Acad Sci USA 79(11):3646–3650CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dunkelblum E, Kehat M, Gothilf S, Greenberg S, Sklarsz B (1982) Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica 10:21–26CrossRefGoogle Scholar
  15. Figueredo AJ, Baker TC (1992) Reduction of the response to sex pheromone in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) following successive pheromonal exposures. J Insect Behav 5(3):347–363. doi: 10.1007/BF01049843 CrossRefGoogle Scholar
  16. Gadenne C, Barrozo RB, Anton S (2016) Plasticity in insect olfaction: to smell or not to smell? Annu Rev Entomol 61:317–333. doi: 10.1146/annurev-ento-010715-023523 CrossRefPubMedGoogle Scholar
  17. Groning J, Hochkirch A (2008) Reproductive interference between animal species. Q Rev Biol 83(3):257–282CrossRefPubMedGoogle Scholar
  18. Grubb M, Thompson I (2004) The influence of early experience on the development of sensory systems. Curr Opin Neurobiol 14:503–512. doi: 10.1016/j.conb.2004.06.006 CrossRefPubMedGoogle Scholar
  19. Guerrero A, Malo E, Coll J, Quero C (2014) Semiochemical and natural product-based approaches to control Spodoptera spp. (Lepidoptera: Noctuidae). J Pest Sci 87:231–247. doi: 10.1007/s10340-013-0533-7 CrossRefGoogle Scholar
  20. Guerrieri F, Gemeno C, Monsempes C, Anton S, Jacquin-Joly E, Lucas P, Devaud J-M (2012) Experience-dependent modulation of antennal sensitivity and input to antennal lobes in male moths (Spodoptera littoralis) pre-exposed to sex pheromone. J Exp Biol 215(13):2334–2341. doi: 10.1242/jeb.060988 CrossRefPubMedGoogle Scholar
  21. Hansson BS (1995) Olfaction in lepidoptera. Experientia 51:1003–1027. doi: 10.1007/BF01946910 CrossRefGoogle Scholar
  22. Kehat M, Dunkelblum E (1993) Sex pheromones—achievements in monitoring and mating disruption of cotton pests in Israel. Arch Insect Biochem Physiol 22(3–4):425–431. doi: 10.1002/arch.940220310 CrossRefGoogle Scholar
  23. Kehat M, Greenberg S, Tamaki Y (1976) Field evaluation of the synthetic sex pheromone, as an attractant for males of the cotton leafworm, Spodoptera littoralis (Boisd.) in Israel. Appl Ent Zool 11(1):45–52CrossRefGoogle Scholar
  24. Kromann SH, Saveer AM, Binyameen M, Bengtsson M, Birgersson G, Hansson BS, Schlyter F, Witzgall P, Ignell R, Becher PG (2015) Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proc R Soc Biol Sci Ser B 282(1799):20141884. doi: 10.1098/rspb.2014.1884 CrossRefGoogle Scholar
  25. Kuenen LPS, Baker TC (1981) Habituation versus sensory adaptation as the cause of reduced attraction following pulsed and constant sex pheromone pre-exposure in Trichopolusia ni. J Insect Physiol 27:721–726CrossRefGoogle Scholar
  26. Legeai F, Malpel S, Montagné N, Monsempes C, Cousserans F, Merlin C, François M-C, Maïbèche-Coisné M, Gavory F, Poulain J, Jacquin-Joly E (2011) An expressed sequence tag collection from the male antennae of the noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genom 12(1):86. doi: 10.1186/1471-2164-12-86 CrossRefGoogle Scholar
  27. Ljungberg H, Anderson P, Hansson BS (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera, Noctuidae). J Insect Physiol 39(3):253–260. doi: 10.1016/0022-1910(93)90096-a CrossRefGoogle Scholar
  28. Martínez T, Camps F (1988) Stimulation of sex pheromone production by head extract in Spodoptera littoralis at different times of the photoperiod. Arch Insect Biochem Physiol 9:211–220. doi: 10.1002/arch.940090305 CrossRefGoogle Scholar
  29. Merlin C, Lucas P, Rochat D, Francois MC, Maïbèche-Coisne M, Jacquin-Joly E (2007) An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J Biol Rhythms 22(6):502–514. doi: 10.1177/0748730407307737 CrossRefPubMedGoogle Scholar
  30. Montagné N, Chertemps T, Brigaud I, Francois A, Francois MC, de Fouchier A, Lucas P, Larsson MC, Jacquin-Joly E (2012) Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. Eur J Neurosci 36:2588–2596. doi: 10.1111/j.1460-9568.2012.08183.x CrossRefPubMedGoogle Scholar
  31. Mukunda L, Miazzi F, Sargsyan V, Hansson BS, Wicher D (2016) Calmodulin affects sensitization of Drosophila melanogaster odorant receptors. Front Cell Neurosci 10:28. doi: 10.3389/fncel.2016.00028 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Muñoz L, Rosell G, Quero C, Guerrero A (2008) Biosynthetic pathways of the Egyptian armyworm: an update. Physiol Entomol 33:275–290. doi: 10.1111/j.1365-3032.2008.00645.x CrossRefGoogle Scholar
  33. Nesbitt BF, Beevor PS, Hall DR, Lester R, Poppi RG (1973) Sex pheromones of two noctuid moths. Nat New Biol 244:208–209CrossRefPubMedGoogle Scholar
  34. Poitout S, Bues R (1974) Élevage de chenilles de vingt-huit espèces de Lépidoptères Noctuidae et de deux espèces d’Arctiidae sur milieu artificiel simple. Particularités de l’élevage selon les espèces. Ann Zool Écol Anim 6:431–441Google Scholar
  35. Quero C, Lucas P, Renou M, Guerrero A (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J Chem Ecol 22(6):1087–1102. doi: 10.1007/BF02027947 CrossRefPubMedGoogle Scholar
  36. Quero C, Vidal B, Guerrero A (2014) EAG responses increase of Spodoptera littoralis antennae after a single pheromone pulse. Nat Prod Commun 9(8):1099–1101PubMedGoogle Scholar
  37. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney FK, Wilson DA, Wu C-F, Thompson RF (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92(2):135–138. doi: 10.1016/j.nlm.2008.09.012 CrossRefPubMedGoogle Scholar
  38. Saïd I, Renou M, Morin JP, Ferreira JM, Rochat D (2005) Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum: behavioral and olfactory neuron responses. J Chem Ecol 31(8):1789–1805CrossRefPubMedGoogle Scholar
  39. Saveer AM, Becher PG, Birgersson G, Hansson BS, Witzgall P, Bengtsson M (2014) Mate recognition and reproductive isolation in the sibling species Spodoptera littoralis and Spodoptera litura. Front Ecol Evol 2(18):1–7. doi: 10.3389/fevo.2014.00018 Google Scholar
  40. Snijders T, Boske RJ (2012) Multilevel analysis: an introduction to basic and advanced multilevel modeling, 2nd edn. Sage Publishers, LondonGoogle Scholar
  41. StataCorp (2011) Stata statistical software: release 12. Stata Corp, College StationGoogle Scholar
  42. Stelinski LL, Gut LJ, Miller JR (2003a) Concentration of air-borne pheromone required for long-lasting peripheral adaptation in the obliquebanded leafroller, Choristoneura rosaceana. Physiol Entomol 28(2):97–107. doi: 10.1046/j.1365-3032.2003.00319.x CrossRefGoogle Scholar
  43. Stelinski LL, Miller JR, Ressa NE, Gut LJ (2003b) Increased EAG responses of tortricid moths after prolonged exposure to plant volatiles: evidence for octopamine-mediated sensitization. J Insect Physiol 49(9):845–856. doi: 10.1016/S0022-1910(03)00136-7 CrossRefPubMedGoogle Scholar
  44. Tamaki Y, Yushima T (1974) Sex pheromone of the cotton leafworm, Spodoptera littoralis. J Insect Physiol 20:1005–1014CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Biological Chemistry and Molecular ModellingIQAC (CSIC)BarcelonaSpain
  2. 2.Institute of Advanced Chemistry of Catalonia (IQAC, CSIC)BarcelonaSpain

Personalised recommendations