Journal of Comparative Physiology A

, Volume 203, Issue 11, pp 903–913 | Cite as

Characterization of the first-order visual interneurons in the visual system of the bumblebee (Bombus terrestris)

  • Juha Rusanen
  • Antti Vähäkainu
  • Matti Weckström
  • Kentaro Arikawa
Original Paper


The bumblebee (Bombus terrestris) has become a common model animal in the study of various aspects of vision and visually guided behavior. Although the bumblebee visual system has been studied to some extent, little is known about the functional role of the first visual neuropil, the lamina. In this work, we provide an anatomical and electrophysiological description of the first-order visual interneurons, lamina monopolar cells (LMCs), of the bumblebee. Using intracellular recording coupled with dye injection, we found that bumblebee LMCs morphologically resemble those found in the honeybee, although only the LMC type L1 cells could be morphologically matched directly between the species. LMCs could also be classified on the basis of their light response properties as spiking or non-spiking. We also show that some bumblebee LMCs can produce spikes during responses to stimulation with naturalistic light contrasts, a property unusual for these neurons.


Insect Compound eye Lamina monopolar cell Graded potential Spike 



We thank Drs. Roman Frolov and Esa-Ville Immonen for critical reading of the manuscript, and Melinda Weed for editing the English. J.R. and A.V. were supported by the University of Oulu. This work was partially supported by grants from the Finnish Academy of Science (Grant No. 269332) to M.W., who passed away in the middle of the work, and from the Japanese Society for Promotion of Sciences (Kakenhi #26251036, Bilateral Joint Research Program) to K.A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bausenwein B, Dittrich AP, Fischbach KF (1992) The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res 267:17–28CrossRefPubMedGoogle Scholar
  2. Borst A (2014) Neural circuits for motion vision in the fly. Cold Spring Harbor Symp Quant Biol 79:131–139CrossRefPubMedGoogle Scholar
  3. Buschbeck EK, Hoy RR (1998) Visual system of the stalk-eyed fly, Cyrtodiopsis quinqueguttata (Diopsidae, Diptera): an anatomical investigation of unusual eyes. J Neurobiol 37:449–468CrossRefPubMedGoogle Scholar
  4. de Souza J, Hertel H, Ventura DF, Menzel R (1992) Response properties of stained monopolar cells in the honeybee lamina. J Comp Physiol A 170:267–274CrossRefGoogle Scholar
  5. Douglas JK, Strausfeld NJ (2003) Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Micros Res Tech 62:132–150CrossRefGoogle Scholar
  6. Dyer AG, Chittka L (2004) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114CrossRefGoogle Scholar
  7. Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong ST, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee CH (2008) The neural substrate of spectral preference in Drosophila. Neuron 60:328–342CrossRefPubMedPubMedCentralGoogle Scholar
  8. Greiner B, Ribi WA, Wcislo WT, Warrant EJ (2004) Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 318:429–437CrossRefPubMedGoogle Scholar
  9. Hamanaka Y, Shibasaki H, Kinoshita M, Arikawa K (2013) Neurons innervating the lamina in the butterfly, Papilio xuthus. J Comp Physiol A 199:341–351CrossRefGoogle Scholar
  10. Hardie RC, Weckström M (1990) Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina. J Comp Physiol A 167:723–736CrossRefGoogle Scholar
  11. Hassenstein VB, Reichardt W (1953) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch B 11:513–524Google Scholar
  12. Jin N, Landgraf T, Klein S, Menzel R (2014) Walking bumblebees memorize panorama and local cues in a laboratory test of navigation. Anim Behav 97:13–23CrossRefGoogle Scholar
  13. Joesch M, Weber F, Eichner H, Borst A (2013) Functional specialization of parallel motion detection circuits in the fly. J Neurosci 33:902–905CrossRefPubMedGoogle Scholar
  14. Laurent G (1990) Voltage-dependent nonlinearities in the membrane of locust nonspiking local interneurons, and their significance for synaptic integration. J Neurosci 10:2268–2280PubMedGoogle Scholar
  15. Meinattur KV, Pursley R, Lin T-Y, Ting C-Y, Smith PD, Pohida T, Lee C-H (2014) Multiple redundant medulla projection neurons mediate color vision in Drosophila. J Neurogenet 28:374–388CrossRefGoogle Scholar
  16. Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type Drosophila melanogaster. J Comp Neurol 305:232–263CrossRefPubMedGoogle Scholar
  17. Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332CrossRefPubMedPubMedCentralGoogle Scholar
  18. Paulk AC, Dacks AM, Gronenberg W (2009) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456CrossRefPubMedGoogle Scholar
  19. Riabinina O, de Ibarra NH, Philippides A, Collett TS (2014) Head movements and the optic flow generated during the learning flights of bumblebees. J Exp Biol 217:2633–2642CrossRefPubMedGoogle Scholar
  20. Ribi WA (1975) The neurons of the first optic ganglion of the bee (Apis mellifera). Adv Anat Embryol Cell Biol 50:5–43Google Scholar
  21. Ribi WA (1987) Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. Cell Tissue Res 247:393–407CrossRefGoogle Scholar
  22. Rivera-Alba M, Vitaladevuni SN, Mishchenko Y, Lu Z, Takemura SY, Scheffer L, Meinertzhagen IA, Chklovskii DB, de Polavieja GG (2011) Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr Biol 21:2000–2005CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rusanen J, Weckström M (2016) Frequency-selective transmission of graded signals in large monopolar neurons of blowfly Calliphora vicina compound eye. J Neurophysiol 115:2052–2064CrossRefPubMedPubMedCentralGoogle Scholar
  24. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127CrossRefPubMedPubMedCentralGoogle Scholar
  25. Skorupski P, Chittka L (2010a) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903CrossRefPubMedGoogle Scholar
  26. Skorupski P, Chittka L (2010b) Photoreceptor spectral sensitivity in the bumblebee, Bombus impatiens (Hymenoptera: Apidae). PLoS One 5:e12049CrossRefPubMedPubMedCentralGoogle Scholar
  27. Skorupski P, Döring TF, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A 193:485–494CrossRefGoogle Scholar
  28. Strausfeld NJ (1976) Atlas of an insect brain. Springer, BerlinCrossRefGoogle Scholar
  29. Strausfeld NJ, Blest AD (1970) Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Philos Trans R Soc Lond B 258:81–134CrossRefGoogle Scholar
  30. Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen IA (2011) Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr Biol 21:2077–2084CrossRefPubMedPubMedCentralGoogle Scholar
  31. Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181CrossRefPubMedPubMedCentralGoogle Scholar
  32. Uusitalo RO, Juusola M, Weckström M (1995) Graded responses and spiking properties of identified first-order visual interneurons of the fly compound eye. J Neurophysiol 73:1782–1792PubMedGoogle Scholar
  33. Vähäkainu A, Vähäsöyrinki M, Weckström M (2013) Membrane filtering properties of the bumblebee (Bombus terrestris) photoreceptors across three spectral classes. J Comp Physiol A 199:629–639CrossRefGoogle Scholar
  34. van Hateren JH (1992) Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation. J Comp Physiol A 171:157–170CrossRefGoogle Scholar
  35. van Hateren JH (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vis Res 37:3407–3416CrossRefPubMedGoogle Scholar
  36. Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O’Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:925–931CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Juha Rusanen
    • 1
  • Antti Vähäkainu
    • 1
  • Matti Weckström
    • 1
  • Kentaro Arikawa
    • 2
  1. 1.Nano and Molecular Materials Research Unit, Faculty of ScienceUniversity of OuluOuluFinland
  2. 2.Laboratory of NeuroethologySokendai (The Graduate University for Advanced Studies)HayamaJapan

Personalised recommendations