Advertisement

Journal of Comparative Physiology A

, Volume 203, Issue 10, pp 831–841 | Cite as

Characterization of the encoding properties of intraspinal mechanosensory neurons in the lamprey

  • Nicole Massarelli
  • Allan L. Yau
  • Kathleen A. Hoffman
  • Tim Kiemel
  • Eric D. TytellEmail author
Original Paper

Abstract

Proprioceptive sensory inputs are an integral part of the closed-loop system of locomotion. In the lamprey, a model organism for vertebrate locomotion, such sensory inputs come from intraspinal mechanosensory cells called “edge cells”. These edge cells synapse directly onto interneurons in the spinal central pattern generator (CPG) circuit and allow the CPG to adjust the motor output according to how the body is bending. However, the encoding properties of the edge cells have never been fully characterized. To identify these properties and better understand edge cells’ role in locomotion, we isolated spinal cords of silver lampreys (Ichthyomyzon unicuspis) and recorded extracellularly from the lateral tracts where edge cell axons are located. We identified cells that responded to mechanical stimuli and used standard spike sorting algorithms to identify separate units, then examined how the cells respond to bending rate and bending angle. Although some cells respond to the bending angle, as was previously known, the strongest and most common responses were to bending velocity. These encoding properties will help us better understand how lampreys and other basal vertebrates adapt their locomotor rhythms to different water flow patterns, perturbations, or other unexpected changes in their environments.

Keywords

Mechanosensory Encoding Lamprey Proprioception Locomotion 

Abbreviations

ANOVA

Analysis of variance

CPG

Central pattern generator

K–S

Kolmogorov–Smirnov test for identical distributions

PCA

Principal component analysis

PD

Proportional-derivative

PID

Proportional-integral-derivative

Bending directions

CL

Center to left

LC

Left to center

LL

Hold on left side

CR

Center to right

RC

Right to center

RR

Hold on right side

Notes

Acknowledgements

This study benefited from discussions with Avis H. Cohen, Lisa J. Fauci, Christina Hamlet, and Megan C. Leftwich. Funding support was received from the National Science Foundation under Grant DBI-RCN 1325165 (to L. J. Fauci and A. H. Cohen). This material is based upon work supported by, or in part by, the US Army Research Laboratory and the US Army Research Office under Contract/Grant No. W911NF-14-1-0268. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Tufts University animal care and use committee.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aiello BR, Stewart TA, Hale ME (2016) Mechanosensation in an adipose fin. Proc R Soc Lond B 283(1826):20152794. doi: 10.1098/rspb.2015.2794 CrossRefGoogle Scholar
  2. Alexandrowicz JS (1967) Receptor organs in thoracic and abdominal muscles of Crustacea. Biol Rev 42(2):288–325. doi: 10.1111/j.1469-185X.1967.tb01422.x CrossRefGoogle Scholar
  3. Anadón R, Molist P, Pombal MA, Rodríguez Moldes I, Rodicio MC (1995) Marginal cells in the spinal cord of four elasmobranchs (Torpedo marmorata, T. torpedo, Raja undulata and Scyliorhinus canicula): evidence for homology with lamprey intraspinal stretch receptor neurons. Eur J Neurosci 7(5):934–943CrossRefPubMedGoogle Scholar
  4. Andersson O, Forssberg H, Grillner S, Wallén P (1981) Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can J Physiol Pharmacol 59(7):713–726CrossRefPubMedGoogle Scholar
  5. Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Ann Rev Neurosci 31(1):1–24CrossRefPubMedGoogle Scholar
  6. Blackshaw SE (1993) Stretch receptors and body wall muscle in leeches. Comp Biochem Physiol 105A(4):643–652. doi: 10.1016/0300-9629(93)90263-4 CrossRefGoogle Scholar
  7. Bouman CA, Shapiro M, Cook G, Atkins CB, Cheng H (1997) Cluster: An unsupervised algorithm for modeling gaussian mixtures. https://engineering.purdue.edu/bouman/software/cluster/manual.pdf
  8. Büschges A (1994) The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. J Exp Biol 189(1):285–292PubMedGoogle Scholar
  9. Cang J, Frieson W (2000) Ventral stretch receptors can change intersegmental phase relationships. J Neurosci 20(20):7822–7829PubMedGoogle Scholar
  10. Cang J, Yu X, Friesen OW (2001) Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons. J Comp Physiol A 187(7):569–579. doi: 10.1007/s003590100229 PubMedGoogle Scholar
  11. Chapman KM, Mosinger JL, Duckrow RB (1979) The role of distributed viscoelastic coupling in sensory adaptation in an insect mechanoreceptor. J Comp Physiol A 131(1):1–12. doi: 10.1007/BF00613078 CrossRefGoogle Scholar
  12. Chevallier S, Jan Ijspeert A, Ryczko D, Nagy F, Cabelguen JM (2008) Organisation of the spinal central pattern generators for locomotion in the salamander: Biology and modelling. Brain Res Rev 57(1):147–161CrossRefPubMedGoogle Scholar
  13. Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27(C):1–228. doi: 10.1016/S0065-2806(08)60013-2 Google Scholar
  14. Franklin GF, Powell JD, Emami-Naeini A (2006) Feedback control of dynamic systems, 5th edn. Pearson Education, Upper Saddle RiverGoogle Scholar
  15. French AS, Torkkeli PH (2008) The power law of sensory adaptation: simulation by a model of excitability in spider mechanoreceptor neurons. Ann Biomed Eng 36(1):153–161. doi: 10.1007/s10439-007-9392-9 CrossRefPubMedGoogle Scholar
  16. Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechanosensitive elements in the lamprey spinal cord in vitro. Brain Res 217:380–386CrossRefPubMedGoogle Scholar
  17. Grillner S, Williams TL, Lagerbäck PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223(4635):500–503CrossRefPubMedGoogle Scholar
  18. Grillner S, Parker D, El Manira A (1998) Vertebrate locomotion: a lamprey perspective. Ann NY Acad Sci 860(1):1–18. doi: 10.1111/j.1749-6632.1998.tb09035.x CrossRefPubMedGoogle Scholar
  19. Hardy AR, Steinworth BM, Hale ME (2016) Touch sensation by pectoral fins of the catfish Pimelodus pictus. Proc R Soc Lond B 283(1824):20152652. doi: 10.1098/rspb.2015.2652 CrossRefGoogle Scholar
  20. Heitler WJ (2016) Dataview. URL: http://www.st-andrews.ac.uk/wjh/dataview/
  21. Hoffman N, Parker D (2011) Interactive and individual effects of sensory potentiation and region-specific changes in excitability after spinal cord injury. Neurosci 199:563–576. doi: 10.1016/j.neuroscience.2011.09.021 CrossRefGoogle Scholar
  22. Horak F, Kuo A (2000) Postural adaptation for altered environments, tasks, and intentions. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, New York, pp 267–281CrossRefGoogle Scholar
  23. Hsu L, Zelenin P, Grillner S, Orlovsky G, Deliagina T (2013) Intraspinal stretch receptor neurons mediate different motor responses along the body in lamprey. J Comp Neurol 41:3848–3861Google Scholar
  24. Jalalvand E, Robertson B, Wallén P, Hill RH, Grillner S (2014) Laterally projecting cerebrospinal fluidcontacting cells in the lamprey spinal cord are of two distinct types. J Comp Neurol 522(8):1753–1768. doi: 10.1002/cne.23542 CrossRefPubMedGoogle Scholar
  25. Jalalvand E, Robertson B, Wallén P, Grillner S (2016) Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 7(10):002. doi: 10.1038/ncomms10002 Google Scholar
  26. Kondoh Y, Okuma J, Newland PL (1995) Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. J Neurophysiol 73(5):1829–1842PubMedGoogle Scholar
  27. Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78CrossRefGoogle Scholar
  28. McClellan AD, Sigvardt KA (1988) Features of entrainment of spinal patern generators for locomotor activity in the lamprey. J Neurosci 8:133–145PubMedGoogle Scholar
  29. McCloskey DI (1973) Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Res 61(C):119–131. doi: 10.1016/0006-8993(73)90521-0 CrossRefGoogle Scholar
  30. Necker R (2006) Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. J Comp Physiol A 192(5):439–448. doi: 10.1007/s00359-006-0105-x CrossRefGoogle Scholar
  31. Pearson KG, Ramirez JM, Jiang W (1992) Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Exp Brain Res 90(3):557–566. doi: 10.1007/BF00230939 CrossRefPubMedGoogle Scholar
  32. Peterka RJ (2003) Simplifying the complexities of maintaining balance. IEEE Eng Med Biol Mag 22(2):63–68. doi: 10.1109/MEMB.2003.1195698 CrossRefPubMedGoogle Scholar
  33. Prochazka A, Gorassini M (1998) Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol 507(1):277–291. doi: 10.1111/j.1469-7793.1998.277bu.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92(4):1651–1697. doi: 10.1152/physrev.00048.2011 CrossRefPubMedGoogle Scholar
  35. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO, White LE (eds) (2008) Neuroscience. Sinauer Associates Inc, SunderlandGoogle Scholar
  36. Rey HG, Pedreira C, Quian Quiroga R (2015) Past, present and future of spike sorting techniques. Brain Res Bull 119:106–117. doi: 10.1016/j.brainresbull.2015.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (2000) Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. J Comp Physiol A 186(4):359–374. doi: 10.1007/s003590050436 CrossRefPubMedGoogle Scholar
  38. Rosenberg J, Necker R (2000) Fine structural evidence of mechanoreception in spinal lumbosacral accessory lobes of pigeons. Neurosci Lett 285(1):13–16CrossRefPubMedGoogle Scholar
  39. Rossignol S, Dubuc RJ, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154CrossRefPubMedGoogle Scholar
  40. Rovainen C (1985) Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey. J Neurophys 54:959–977Google Scholar
  41. Rovainen CM (1974) Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154(2):189–206. doi: 10.1002/cne.901540206 CrossRefPubMedGoogle Scholar
  42. Rovainen CM (1982) Neurophysiology. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic Press, London, pp 1–136Google Scholar
  43. Rovainen CM, Johnson PA, Roach EA, Mankovsky JA (1973) Projections of individual axons in lamprey spinal cord determined by tracings through serial sections. J Comp Neurol 149(2):193–201. doi: 10.1002/cne.901490205 CrossRefPubMedGoogle Scholar
  44. Schroeder DM (1986) An ultrastructural study of the marginal nucleus, the intrinsic mechanoreceptor of the snake’s spinal cord. Somatosens Res 4(2):127–140CrossRefPubMedGoogle Scholar
  45. Schroeder DM, Egar MW (1990) Marginal neurons in the urodele spinal cord and the associated denticulate ligaments. J Comp Neurol 301(1):93–103CrossRefPubMedGoogle Scholar
  46. Singh SK, Popa DO (1995) An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans Robot Automat 11(6):912–921. doi: 10.1109/70.478439 CrossRefGoogle Scholar
  47. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New YorkGoogle Scholar
  48. Tytell ED, Cohen AH (2008) Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion. J Neurophysiol 99(5):2408–2419. doi: 10.1152/jn.01085.2007 CrossRefPubMedGoogle Scholar
  49. Viana Di Prisco G, Wallén P, Grillner S (1990) Synaptic effects of intraspinal stretch-receptor neurons mediating movement-related feedback during locomotion. Brain Res 530(1):161–166CrossRefGoogle Scholar
  50. Vinay L, Barthe JY, Grillner S (1996) Central modulation of stretch receptor neurons during fictive locomotion in lamprey. J Neurophysiol 76(2):1224–1235PubMedGoogle Scholar
  51. Williams TL, Sigvardt KA, Kopell N, Ermentrout GB, Remler MP (1990) Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. J Neurophysiol 64(3):862–871PubMedGoogle Scholar
  52. Williams R IV, Hale M (2015) Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish ( Lepomis macrochirus). J Exp Biol 218:3435–3447. doi: 10.1242/jeb.123638 CrossRefPubMedGoogle Scholar
  53. Williams R IV, Neubarth N, Hale M (2013) The function of fin rays as proprioceptive sensors in fish. Nat Commun 4:1729. doi: 10.1038/ncomms2751 CrossRefPubMedGoogle Scholar
  54. Zill SN, Moran DT (1981) The exoskeleton and insect proprioception I. Responses of tibial campaniform sensilla to external and muscle-generated force in the American cockroach Periplaneta americana. J Exp Biol 91:1–24Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of Maryland Baltimore CountyBaltimoreUSA
  2. 2.Tufts UniversityMedfordUSA
  3. 3.University of MarylandCollege ParkUSA

Personalised recommendations