Advertisement

Journal of Comparative Physiology A

, Volume 203, Issue 10, pp 791–806 | Cite as

Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae

  • Cole Malloy
  • Jacob Sifers
  • Angela Mikos
  • Aya Samadi
  • Aya Omar
  • Christina Hermanns
  • Robin L. CooperEmail author
Original Paper

Abstract

The Drosophila melanogaster heart has become a principal model in which to study cardiac physiology and development. While the morphology of the heart in Drosophila and mammals is different, many of the molecular mechanisms that underlie heart development and function are similar and function can be assessed by similar physiological measurements, such as cardiac output, rate, and time in systole or diastole. Here, we have utilized an intact, optogenetic approach to assess the neural influence on heart rate in the third instar larvae. To simulate the release of modulators from the nervous system in response to environmental influences, we have directed expression of channel-rhodopsin variants to targeted neuronal populations to assess the role of these neural ensembles in directing release of modulators that may affect heart rate in vivo. Our observations show that the activation of targeted neurons, including cholinergic, dopaminergic, and serotonergic neurons, stimulate the release of cardioactive substances that increase heart rate after the initial activation at both room temperature and in a cold environment. This parallels previous studies suggesting these modulators play a crucial role in altering heart rate when applied to exposed hearts and adds to our understanding of chemical modulation of heart rate in intact Drosophila larvae.

Keywords

Cardiac Optogenetics Drosophila melanogaster Heart rate Modulators 

Abbreviations

5-HT

Serotonin

ATR

All-trans-retinal

Ach

Acetylcholine

Cha-Gal4

GAL4 driver targeting expression to cholinergic neurons (choline acetyltransferase)

ChR2

Channel-rhodopsin-2

ChR2–XXL

Channel-rhodopsin-2–XXL

ChR2-H134RII-mcherry

Less sensitive channel-rhodopsin-2

CNS

Central nervous system

DA

Dopamine

HR

Heart rate

Ple-Gal4

GAL4 driver targeting expression to dopaminergic neurons (pale)

Ppk-Gal4

GAL4 driver targeting expression to class IV dendritic arborization sensory neurons (pickpocket)

Trh-Gal4

GAL4 driver targeting expression to serotonergic neurons (Tryptophan hydroxylase)

Notes

Acknowledgements

This work was funded by G. Ribble fellowship from Department of Biology, Univ. of KY (A.O.), A. M. was supported by KY IDeA Network of Biomedical Research Excellence Grant #P20GM103436, funding provided by Research and a summer research undergraduate fellowship from the Outreach Center for Science and Health Career Opportunities at the University of Kentucky (JS) and personal funds (RLC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alex A, Li A, Tanzi RE, Zhou C (2015) Optogenetic pacing in Drosophila melanogaster. Sci Adv 1(9):e1500639. doi: 10.1126/sciadv.1500639 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Badre NH, Martin ME, Cooper RL (2005) The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp Biochem Physiol A Mol Physiol Integr Physiol 140(3):363–376. doi: 10.1016/j.cbpb.2005.01.019 CrossRefGoogle Scholar
  3. Bier E, Bodmer R (2004) Drosophila, an emerging model for cardiac disease. Gene 342(1):1–11CrossRefPubMedGoogle Scholar
  4. Bodmer R, Venkatesh TV (1998) Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev Genet 22(3):181–186CrossRefPubMedGoogle Scholar
  5. Cammarato A, Ahrens CH, Alayari NN, Qeli E, Rucker J, Reedy MC, Zmasek CM, Gucek M, Cole RN, Van Eyk JE, Bodmer R, O’Rourke B, Bernstein SI, Foster DB (2011) A mighty small heart: the cardiac proteome of adult Drosophila melanogaster. PLoS One 6(4):11. doi: 10.1371/journal.pone.0018497 CrossRefGoogle Scholar
  6. Campos-Ortega JA (1974) Autoradiographic localization of 3H- gamma -aminobutyric acid uptake in the lamina ganglionaris of musca and Drosophila. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 147(3):415–431CrossRefPubMedGoogle Scholar
  7. Choma MA, Suter MJ, Vakoc BJ, Bouma BE, Tearney GJ (2011) Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis Model Mech 4(3):411–420. doi: 10.1242/dmm.005231 CrossRefPubMedGoogle Scholar
  8. Collins C, Miller T (1977) Studies on the action of biogenic amines on cockroach heart. J Exp Biol 67:1–15PubMedGoogle Scholar
  9. Dasari S, Cooper RL (2006) Direct influence of serotonin on the larval heart of Drosophila melanogaster. J Comp Physiol B 176(4):349–357. doi: 10.1007/s00360-005-0058-3 CrossRefPubMedGoogle Scholar
  10. Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, Gao SQ, Fiala A, Langenhan T, Nagel G, Kittel RJ (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci USA 111:13972–13977CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Castro C, Titlow J, Majeed ZR, Cooper RL (2014) Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae. J Comp Physiol A 200(1):83–92. doi: 10.1007/s00359-013-0864-0 CrossRefGoogle Scholar
  12. Desai-Shah M, Papoy AR, Ward M, Cooper RL (2010) Roles of the Sarcoplasmic/Endoplasmic reticulum Ca2-ATPase, plasma membrane Ca2-ATPase and Na/Ca2 exchanger in regulation of heart rate in larval Drosophila. Open Physiol J 3:16–36CrossRefGoogle Scholar
  13. Dowse H, Ringo J, Power J, Johnson E, Kinney K, White L (1995) A congenital heart defect in Drosophila caused by an action-potential mutation. J Neurogenet 10(3):153–168. doi: 10.3109/01677069509083461 CrossRefPubMedGoogle Scholar
  14. Dulcis D, Levine RB (2003) Innervation of the heart of the adult fruit fly, Drosophila melanogaster. J Comp Neurol 465(4):560–578. doi: 10.1002/cne.10869 CrossRefPubMedGoogle Scholar
  15. Dulcis D, Levine RB (2005) Glutamatergic innervation of the heart initiates retrograde contractions in adult Drosophila melanogaster. J Neurosci 25(2):271–280. doi: 10.1523/jneurosci.2906-04.2005 CrossRefPubMedGoogle Scholar
  16. Grossfield J (1978) Non-sexual behavior of Drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2B. Academic Press, New York, pp 1–126Google Scholar
  17. Gu GG, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila. J Neurobiol 28(3):269–280. doi: 10.1002/neu.480280302 CrossRefPubMedGoogle Scholar
  18. Hillyer JF, Estévez-Lao TY, Mirzai HE (2015) The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae. Comp Biochem Physiol A Mol Integr Physiol 188:49–57. doi: 10.1016/j.cbpa.2015.06.015 CrossRefPubMedGoogle Scholar
  19. Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Bio 17:2105–2116CrossRefGoogle Scholar
  20. Jennings HS (1904) Contributions to the study of the behavior of lower organisms. Publ Carnegie Inst Wash 16:256Google Scholar
  21. Johnson WA, Carder JW (2012) Drosophila nociceptors mediate larval aversion to dry surface environments utilizing both the painless TRP channel and the DEG/ENaC subunit, PPK1. Plos One 7:e32878CrossRefPubMedPubMedCentralGoogle Scholar
  22. Johnstone AFM, Cooper RL (2006) Direct innervation of the Drosophila melanogaster larval aorta. Brain Res 1083(1):159–163CrossRefGoogle Scholar
  23. Johnson E, Ringo J, Dowse H (1997) Modulation of Drosophila heartbeat by neurotransmitters. J Comp Physiol B 167(2):89–97. doi: 10.1007/s003600050051 CrossRefPubMedGoogle Scholar
  24. Johnson E, Ringo J, Bray N, Dowse H (1998) Genetic and pharmacological identification of ion channels central to the Drosophila cardiac pacemaker. J Neurogenet 12(1):1–24CrossRefPubMedGoogle Scholar
  25. Kim MJ, Johnson WA (2014) ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC Neurosci 15:14CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim MJ, Ainsley JA, Carder JW, Johnson WA (2013) Hyperoxia-triggered aversion behavior in Drosophila foraging larvae is mediated by sensory detection of hydrogen peroxide. J Neurogenet 27:151–162CrossRefPubMedGoogle Scholar
  27. Lehmacher C, Abeln B, Paululat A (2012) The ultrastructure of Drosophila heart cells. Arthropod Struct Dev 41:459–474CrossRefPubMedGoogle Scholar
  28. MacMillan HA, Andersen JL, Davies SA, Overgaard J (2015) The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci Rep 18(5):18607. doi: 10.1038/srep18607 Google Scholar
  29. Majeed ZR, Stacy A, Cooper RL (2014) Pharmacological and genetic identification of serotonin receptor subtypes on Drosophila larval heart and aorta. J Comp Physiol B 184(2):205–219. doi: 10.1007/s00360-013-0795-7 CrossRefPubMedGoogle Scholar
  30. Malloy CA, Ritter K, Robinson J, English C, Cooper RL (2016) Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 186(1):45–57CrossRefPubMedGoogle Scholar
  31. Mast SO (1911) Light and the behavior of organisms. Wiley, New YorkCrossRefGoogle Scholar
  32. Matsumoto H, Tanaka K, Noguchi H, Hayakawa Y (2003) Cause of mortality in insects under severe stress. Eur J Biochem 270:3469–3476CrossRefPubMedGoogle Scholar
  33. Molina MR, Cripps RM (2001) Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech Devel 109(1):51–59. doi: 10.1016/s0925-4773(01)00509-3 CrossRefGoogle Scholar
  34. Nozdrachev AD (1983) The physiology of the autonomic nervous system. Meditsina, Liningrad (In Russian) Google Scholar
  35. Nozdrachev AD (1996) Chemical structure of the peripheral autonomic (visceral) reflex. Uspekhi Fiziolog Nauk 27:28–60 (In Russian) Google Scholar
  36. Nozdrachev AD, Bagaev VA (1983) Studies of electrical activity of the peripheral components of the autonomic nervous system in chronic experiments. J Auton Nerv Syst 9(2–3):347–360CrossRefPubMedGoogle Scholar
  37. Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HSV, Akasaka T, Yasuda S, Metzger JM, Giles W, Posakony JW, Bodmer R (2007) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci USA 104(10):3943–3948. doi: 10.1073/pnas.0609278104 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Orlov JU (1926) Die innervation des Darmes des Flusskrebses. Zschr F Mikr Anat Forschung 4:101–148Google Scholar
  39. Orlov JU (1927) Das Magenganglion des Fluβkrebses, Ein Beitrag zur vergleichenden Histologis des sympathischen Nervensystem. Z Mikrosk Anat Forschung 8(1):67–102Google Scholar
  40. Orlov JU (1929) Ueber den histologischen Bau der Ganglien des Mundmagennervensystem des Crustaceen. Ein Beitrag zur vergleichenden Histogie des sympatischen Nervensystems. Zschr F Zellforschung und mikroskop Anat. 8:493–541CrossRefGoogle Scholar
  41. Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC (2009) Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101(6):3075–3088. doi: 10.1152/jn.00071.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ring RA (1982) Freezing-tolerant insects with low supercooling points. Comp Biochem Physiol A 73(4):605–612CrossRefGoogle Scholar
  43. Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic Press, Cambridge, pp 397–452Google Scholar
  44. Robertson JL, Tsubouchi A, Tracey WD (2013) Larval defense against attack from parasitoid wasps requires nociceptive neurons. PLoS One 8(10):e78704. doi: 10.1371/journal.pone.0078704 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sawin EP, Harris LR, Campos AR, Sokolowski MB (1994) Sensorimotor transformation from light reception to phototactic behavior in Drosophila larvae (diptera: drosophilidae). J Insect Behav 7:553CrossRefGoogle Scholar
  46. Schoofs A, Hückesfeld S, Surendran S, Pankratz MJ (2014) Serotonergic pathways in the Drosophila larval enteric nervous system. J Insect Physiol 69:118–125CrossRefPubMedGoogle Scholar
  47. Sénatore S, Rami Reddy V, Sémériva M, Perrin L, Lalevée N (2010) Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 6(9):e1001088. doi: 10.1371/journal.pgen.1001088 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shuranova ZP, Burmistrov YM, Strawn JR, Cooper RL (2006) Evidence for an autonomic nervous system in decapod crustaceans. Int J Zool Res 2(3):242–283CrossRefGoogle Scholar
  49. Sulkowski MJ, Kurosawa MS, Cox DN (2011) Growing pains: development of the larval nocifensive response in Drosophila. Biol Bull 221(3):300–306. doi: 10.1086/BBLv221n3p300 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Titlow JS, Rufer J, King K, Cooper RL (2013) Pharmacological analysis of dopamine modulation in the Drosophila melanogaster larval heart. Physiol Rep 1(2):e00020. doi: 10.1002/phy2.20 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Titlow JS, Rice J, Majeed ZR, Holsopple E, Biecker S, Cooper RL (2014) Anatomical and genotype-specific mechanosensory responses in Drosophila melanogaster larvae. Neurosci Res 83:54–63. doi: 10.1016/j.neures.2014.04.003 CrossRefPubMedGoogle Scholar
  52. Vankirk T, Powers E, Dowse HB (2016) Melatonin increases the regularity of cardiac rhythmicity in the Drosophila heart in both wild-type and strains bearing pathogenic mutations. J Comp Physiol B. doi: 10.1007/s00360-016-1019-8 PubMedGoogle Scholar
  53. White LA, Ringo JM, Dowse HB (1992) Effects of deuterium oxide and temperature on heart rate in Drosophila melanogaster. J Comp Physiol B 162(3):278–283CrossRefPubMedGoogle Scholar
  54. Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 103(5):1394–1399. doi: 10.1073/pnas.0507359103 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–U312CrossRefGoogle Scholar
  56. Zavarzin AA (1941) Ocherki po evol’utsionnoj gistologii nervnoj sistemy Essays on the evolutionary histology of the nervous system. In: Zavarzin AA, Izbrannye trudy (Selected Works), Tom III, Izdatel’stvo AN SSSR: Moskva-Leningrad, 1950. (In Russian)Google Scholar
  57. Zhu Y-C, Yocom E, Sifers J, Uradu H, Cooper RL (2016a) Modulatory effects on Drosophila larva hearts in room temperature, acute and chronic cold stress. J Comp Physiol B 186(7):829–841CrossRefPubMedGoogle Scholar
  58. Zhu Y-C, Uradu H, Majeed ZR, Cooper RL (2016b) Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 4(3):e12695CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zornik E, Paisley K, Nichols R (1999) Neural transmitters and a peptide modulate Drosophila heart rate. Peptides 20(1):45–51. doi: 10.1016/s0196-9781(98)00151-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biology and Center for Muscle BiologyUniversity of KentuckyLexingtonUSA
  2. 2.Sayre School, Upper SchoolLexingtonUSA
  3. 3.Department of ScienceAlice Lloyd CollegePippa PassesUSA

Personalised recommendations