Journal of Comparative Physiology A

, Volume 203, Issue 9, pp 717–735 | Cite as

Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study

  • Baldomero M. Olivera
  • Shrinivasan Raghuraman
  • Eric W. Schmidt
  • Helena Safavi-HemamiEmail author


From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products—venom components from predatory marine cone snails—this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.


Chemical neuroethology Natural products Cone snail venom Toxin cabals 



The research of the authors was supported by the National Institute of General Medical Science GM048677 (to BMO), Marie Curie Fellowship (to HS-H), Esther Fujimoto Memorial Fellowship (to SR), and by NIH U01TW008163 (to EWS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, Baker EN, Harding MM, Hodkin DC, Rimmer B, Sheat S (1969) Structure of rhombohedral 2 zinc insulin crystals. Nature 224:491–495. doi: 10.1038/224491a0 CrossRefGoogle Scholar
  2. Aman JW, Imperial JS, Ueberheide B, Zhang M-M, Aguilar M, Taylor D, Watkins M, Yoshikami D, Showers-Corneli P, Safavi-Hemami H, Biggs J, Teichert RW, Olivera BM (2015) Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus. Proc Natl Acad Sci USA 112:5087–5092CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barghi N, Concepcion GP, Olivera BM, Lluisma AO (2015) Comparison of the venom peptides and their expression in closely related conus species: insights into adaptive post-speciation evolution of conus exogenomes. Genome Biol Evol 7(6):1797–1814. doi: 10.1093/gbe/evv109 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bayrhuber M, Vijayan V, Ferber M, Graf R, Korukottu J (2005) Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characterization. J Biol Chem 280:23766–23770CrossRefPubMedGoogle Scholar
  5. Biass D, Dutertre S, Gerbault A, Menou J-L, Offord R, Favreau P, Stocklin R (2009) Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. J Proteom 72(2):210–218CrossRefGoogle Scholar
  6. Bingham J-P, Baker MR, Chun JB (2012) Analysis of a cone snail’s killer cocktail—the milked venom of Conus geographus(). Toxicon Off J Int Soc Toxinol 60(6):1166–1170. doi: 10.1016/j.toxicon.2012.07.014 CrossRefGoogle Scholar
  7. Blumenthal S (2010) From insulin and insulin-like activity to the insulin superfamily of growth-promoting peptides: a 20th-century odyssey. Perspect Biol Med 53(4):491–508. doi: 10.1353/pbm.2010.0001 CrossRefPubMedGoogle Scholar
  8. Chang D, Duda TFJ (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol 29(8):2019–2029CrossRefPubMedGoogle Scholar
  9. Chun JB, Baker MR, Kim DH, Leroy M, Toribo P, Bingham JP (2012) Cone snail milked venom dynamics—a quantitative study of Conus purpurascens. Toxicon 60(1):83–94. doi: 10.1016/j.toxicon.2012.03.019 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412–421. doi: 10.1016/j.cell.2014.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Craig AG, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W, Dykert J, Richelson E, Navarro V, Mazella J, Watkins M, Hillyard D, Imperial J, Cruz LJ, Olivera BM (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 274:13752–13759CrossRefPubMedGoogle Scholar
  12. Cruz LJ, Corpuz G, Olivera BM (1978a) Mating, spawning, development and feeding habits of conus geographus in captivity. Nautilus 92(4):150–152Google Scholar
  13. Cruz LJ, Gray WR, Olivera BM (1978b) Purification and properties of a myotoxin from Conus geographus venom. Arch Biochem Biophys 190:539–548CrossRefPubMedGoogle Scholar
  14. Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, Moczydlowski E (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288PubMedGoogle Scholar
  15. Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33(7):496–499. doi: 10.1007/s10295-006-0112-5 CrossRefPubMedGoogle Scholar
  16. Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158(6):1402–1414. doi: 10.1016/j.cell.2014.08.032 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duda TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci 96:6820–6823CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dutertre S, Biass D, Stöcklin R, Favreau P (2010) Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon 55(8):1453–1462. doi: 10.1016/j.toxicon.2010.02.025 CrossRefPubMedGoogle Scholar
  19. Dutertre S, Jin A-H, Alewood PF, Lewis RJ (2014a) Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon 91:135–144. doi: 10.1016/j.toxicon.2014.09.011 CrossRefPubMedGoogle Scholar
  20. Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ (2014b) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521. doi: 10.1038/ncomms4521 PubMedPubMedCentralGoogle Scholar
  21. Ebberink RHM, Smit AB, Van Minnen J (1989) The insulin family: evolution of structure and function in vertebrates and invertebrates. Biol Bull 177:176–182CrossRefGoogle Scholar
  22. England LJ, Gulyas J (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails (vol 281, pg 575, 1998). Science 282(5388):417Google Scholar
  23. Fainzilber M, Gordon D, Hasson A, Spira ME, Zlotkin E (1991) Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur J Biochem 202:589–595CrossRefPubMedGoogle Scholar
  24. Floyd PD, Li L, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS (1999) Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica. J Neurosci Off J Soc Neurosci 19(18):7732–7741Google Scholar
  25. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28(2):400–410. doi: 10.1039/c0np00034e CrossRefPubMedGoogle Scholar
  26. Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1(1):33–43PubMedGoogle Scholar
  27. Himaya SWA, Jin A-H, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, Alewood PF, Lewis RJ (2015) Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail Conus catus. J Proteome Res 14(10):4372–4381. doi: 10.1021/acs.jproteome.5b00630 CrossRefPubMedGoogle Scholar
  28. Hopkins C, Grilley M, Miller C, Shon KJ, Cruz LJ, Gray WR, Dykert J, Rivier J, Yoshikami D, Olivera BM (1995) A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J Biol Chem 270:22361–22367CrossRefPubMedGoogle Scholar
  29. Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR (2005) Intraspecific variation of venom injected by fish-hunting Conus snails. J Exp Biol 208(15):2873CrossRefPubMedGoogle Scholar
  30. Jin A-H, Israel MR, Inserra MC, Smith JJ, Lewis RJ, Alewood PF, Vetter I, Dutertre S (2015) δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proc R Soc Biol Sci 282(1811). doi: 10.1098/rspb.2015.0817
  31. Johnson C, Stablum W (1971) Observations on feeding behavior of Conus geographus (Gastropoda:Toxoglossa). Pac Sci 25(1):109–111. doi:
  32. Kelley WP, Schulz JR, Jakubowski JA, Gilly WF, Sweedler JV (2006) Two toxins from conus striatus that individually induce tetanic paralysis. Biochemistry 45(47):14212–14222. doi: 10.1021/bi061485s CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kohn AJ (2014) Conus of the Southeastern United States and Caribbean. Princeton University Press, PrincetonCrossRefGoogle Scholar
  34. Kohn AJ (1985) Evolutionary ecology of Conus on Indo-Pacific coral reefs. In: Proceedings of the fifth international Coral Reef congress, 27 May 1985, vol Symposia and Seminars, pp 139–144Google Scholar
  35. Leipold E, Hansel A, Olivera BM, Terlau H, Heinemann SH (2005) Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS Lett 579:3881–3884CrossRefPubMedGoogle Scholar
  36. McIntosh JM, Foderaro TA, Li W, Ireland CM, Olivera BM (1993) Presence of serotonin in the venom of Conus imperialis. Toxicon 31(12):1561–1566CrossRefPubMedGoogle Scholar
  37. Mena EE, Gullak MF, Pagnozzi MJ, Richter KE, Rivier J, Cruz LJ, Olivera BM (1990) Conantokin-G: a novel peptide antagonist to the N-methyl-d-aspartic acid (NMDA) receptor. Neurosci Lett 118(2):241–244CrossRefPubMedGoogle Scholar
  38. Menting JG, Gajewiak J, MacRaild CA, Chou DH, Disotuar MM, Smith NA, Miller C, Erchegyi J, Rivier JE, Olivera BM, Forbes BE, Smith BJ, Norton RS, Safavi-Hemami H, Lawrence MC (2016) A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nat Struct Mol Biol. doi: 10.1038/nsmb.3292 PubMedGoogle Scholar
  39. Neves JL, Lin Z, Imperial JS, Antunes A, Vasconcelos V, Olivera BM, Schmidt EW (2015) Small molecules in the cone snail arsenal. Org Lett 17(20):4933–4935. doi: 10.1021/acs.orglett.5b02389 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nielsen DB, Dykert J, Rivier JE, McIntosh JM (1994) Isolation of Lys-conopressin-G from the venom of the worm-hunting snail, Conus imperialis. Toxicon 32(7):845–848CrossRefPubMedGoogle Scholar
  41. Nybakken J (1967) Preliminary observations on the feeding behavior of Conus purpurascens Broderip, 1833. Veliger 10:55–57Google Scholar
  42. Olivera BM (1997a) Conus Venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8:2101–2109CrossRefPubMedPubMedCentralGoogle Scholar
  43. Olivera BM (1997b) E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8(11):2101–2109CrossRefPubMedPubMedCentralGoogle Scholar
  44. Olivera BM, McIntosh JM, Cruz LJ, Luque FA, Gray WR (1984) Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23:5087–5090CrossRefPubMedGoogle Scholar
  45. Olivera BM, Seger J, Horvath MP, Fedosov AE (2015) Prey-capture strategies of fish-hunting cone snails: behavior, neurobiology and evolution. Brain Behav Evol 86(1):58–74. doi: 10.1159/000438449 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Oliverio M, Modica MV (2010) Relationships of the haematophagous marine snail Colubraria (Rachiglossa: Colubrariidae), within the neogastropod phylogenetic framework. Zool J Linn Soc 158:779–800CrossRefGoogle Scholar
  47. Puillandre N, Bouchet P, Duda TF Jr, Kauferstein S, Kohn AJ, Olivera BM, Watkins M, Meyer C (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303. doi: 10.1016/j.ympev.2014.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ramilo CA, Zafaralla GC, Nadasdi L, Hammerland LG, Yoshikami D, Gray WR, Kristipati R, Ramachandran J, Miljanich G, Olivera BM (1992) Novel alpha- and omega-conotoxins from Conus striatus venom. Biochemistry 31:9919–9926CrossRefPubMedGoogle Scholar
  49. Rodriguez AM, Dutertre S, Lewis RJ, Marí F (2015) Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Anal Bioanal Chem 407(20):6105–6116. doi: 10.1007/s00216-015-8787-y CrossRefPubMedGoogle Scholar
  50. Safavi-Hemami H, Gajewiak J, Karanth S, Robinson SD, Ueberheide B, Douglass AD, Schlegel A, Imperial JS, Watkins M, Bandyopadhyay PK, Yandell M, Li Q, Purcell AW, Norton RS, Ellgaard L, Olivera BM (2015) Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc Natl Acad Sci USA 112(6):1743–1748. doi: 10.1073/pnas.1423857112 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Showers Corneli P, Seger J, Yandell M, Olivera BM (2016) Venom insulins of cone snails diversify rapidly and track prey taxa. Mol Biol Evol. doi: 10.1093/molbev/msw174 PubMedPubMedCentralGoogle Scholar
  52. Sato K, Park NG, Kohno T, Maeda T, Kim JI, Kato R, Takahashi M (1993) Role of basic residues for the binding of omega-conotoxin GVIA to N-type calcium channels. Biochem Biophys Res Commun 194(3):1292–1296. doi: 10.1006/bbrc.1993.1964 CrossRefPubMedGoogle Scholar
  53. Schulz JR, Norton AG, Gilly WF (2004) The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism. Biol Bull 207:77–79CrossRefPubMedGoogle Scholar
  54. Shabanpoor F, Separovic F, Wade JD (2009) The human insulin superfamily of polypeptide hormones. Vitam Horm 80:1–31. doi: 10.1016/s0083-6729(08)00601-8 CrossRefPubMedGoogle Scholar
  55. Sharp KH, Davidson SK, Haygood MG (2007) Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J 1(8):693–702. doi: 10.1038/ismej.2007.78 CrossRefPubMedGoogle Scholar
  56. Smit AB, van Kesteren RE, Li KW, Van Minnen J, Spijker S, Van Heerikhuizen H, Geraerts WP (1998) Towards understanding the role of insulin in the brain: lessons from insulin-related signaling systems in the invertebrate brain. Prog Neurobiol 54(1):35–54CrossRefPubMedGoogle Scholar
  57. Sunagar K, Moran Y (2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 11(10):e1005596. doi: 10.1371/journal.pgen.1005596 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Teichert RW, López-Vera E, Gulyas J, Watkins M, Rivier J, Olivera BM (2006) Definition and characterization of the short αA-conotoxins: a single residue determines dissociation kinetics from the fetal muscle nicotinic acetylcholine receptor. Biochemistry 45(4):1304–1312. doi: 10.1021/bi052016d CrossRefPubMedGoogle Scholar
  59. Terlau H, Shon KJ, Grilley M, Stocker M, Stuhmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381(6578):148–151. doi: 10.1038/381148a0 CrossRefPubMedGoogle Scholar
  60. Terlau H, Jacobson R, Shon KJ, Stocker M, Stuhmer W, Olivera BM (1997) K-conotoxin PVIIa, a Conus peptide targeted to potassium channels H. Pflugs Arch Eur J Physiol 433(6):O103Google Scholar
  61. Thompson JE (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis—I. Biol Evid Mar Biol 88(1):23–26. doi: 10.1007/BF00393039 CrossRefGoogle Scholar
  62. Tianero MD, Pierce E, Raghuraman S, Sardar D, McIntosh JA, Heemstra JR, Schonrock Z, Covington BC, Maschek JA, Cox JE, Bachmann BO, Olivera BM, Ruffner DE, Schmidt EW (2016) Metabolic model for diversity-generating biosynthesis. Proc Natl Acad Sci USA 113(7):1772–1777. doi: 10.1073/pnas.1525438113 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Van Wagoner RM, Jacobsen RB, Olivera BM, Ireland CM (2003) Characterization and three-dimensional structure determination of psi-conotoxin Piiif, a novel noncompetitive antagonist of nicotinic acetylcholine receptors. Biochemistry 42:6353–6362CrossRefPubMedGoogle Scholar
  64. Walker CS, Jensen S, Ellison M, Matta JA, Lee WY, Imperial JS, Duclos N, Brockie PJ, Madsen DM, Isaac JTR, Olivera B, Maricq AV (2009) A novel Conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors. Curr Biol 19(11):900–908. doi: 10.1016/j.cub.2009.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Watkins M, Hillyard DR, Olivera BM (2006) Genes expressed in a turrid venom duct: divergence and similarity to conotoxins. J Mol Evol 62:247–256CrossRefPubMedGoogle Scholar
  66. Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang M-M (2011) mu-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci USA 108:10302–10307CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zafaralla GC, Ramilo C, Gray WR, Karlstrom R, Olivera BM, Cruz LJ (1988) Phylogenetic specificity of cholinergic ligands: alpha-conotoxin SI. Biochemistry 27:7102–7105CrossRefPubMedGoogle Scholar
  68. Zugasti-Cruz A, Maillo M, Lopez-Vera E, Falcon A, Heimer de la Cotera EP, Olivera BM, Aguilar MB (2006) Amino acid sequence and biological activity of a gamma-conotoxin-like peptide from the worm-hunting snail Conus austini. Peptides 27:506–511CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Medicinal ChemistryUniversity of UtahSalt Lake CityUSA
  3. 3.Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations