Journal of Comparative Physiology A

, Volume 203, Issue 6–7, pp 491–497 | Cite as

The magnetic map sense and its use in fine-tuning the migration programme of birds

  • D. Heyers
  • D. Elbers
  • M. Bulte
  • F. Bairlein
  • H. Mouritsen


The Earth’s magnetic field is one of several natural cues, which migratory birds can use to derive directional (“compass”) information for orientation on their biannual migratory journeys. Moreover, magnetic field effects on prominent aspects of the migratory programme of birds, such as migratory restlessness behaviour, fuel deposition and directional orientation, implicate that geomagnetic information can also be used to derive positional (“map”) information. While the magnetic “compass” in migratory birds is likely to be based on radical pair-forming molecules embedded in their visual system, the sensory correlates underlying a magnetic “map” sense currently remain elusive. Behavioural, physiological and neurobiological findings indicate that the sensor is most likely innervated by the ophthalmic branch of the trigeminal nerve and based on magnetic iron particles. Information from this unknown sensor is neither necessary nor sufficient for a functional magnetic compass, but instead could contribute important components of a multifactorial “map” for global positioning. Positional information could allow migratory birds to make vitally important dynamic adaptations of their migratory programme at any relevant point during their journeys.


Magnetoreception Navigation Orientation Migratory restlessness Migratory fuelling 



Generous financial support was provided by the VolkswagenStiftung (Lichtenberg Professorship to HM), the Air Force Office of Scientific Research (Air Force Materiel Command, USAF award no. FA9550-14-1-0095 to HM) and the Deutsche Forschungsgemeinschaft (DFG; BA816/15-4 to FB; MO1408/1-2 and GRK1885 to HM; HE6221/1-1 to DH). DH, HM and FB designed the study; DH, DE and HM wrote the first draft of the manuscript, which all authors commented on.


  1. Bairlein F (1991) Body mass of garden warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36:48–61Google Scholar
  2. Bairlein F (2003) Large-scale networks in bird research in Europe: pitfalls and prospects. Avian Sci 3:49–63Google Scholar
  3. Bakken V, Runde O, Tjorve E (2006) Norsk ringmerkings atlas (Vol 2 duer-spurvefugler). Stavanger Museum, NorwayGoogle Scholar
  4. Beason R, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244PubMedGoogle Scholar
  5. Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca Pallas). Acta XIX. Congressus Internationalis Ornithologica. Ottawa 1986:1955–62Google Scholar
  6. Benhamou S (1997) On systems of reference involved in spatial memory. Behav Process 40:149–63CrossRefGoogle Scholar
  7. Benhamou (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 225:235–39CrossRefPubMedGoogle Scholar
  8. Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. IBIS 115:594–9CrossRefGoogle Scholar
  9. Berthold P (1974) Circannuale periodik bei grasmücken (Sylvia).III: periodik der mauser, der nachtunruhe und des körpergewichtes bei mediterranen arten mit unterschiedlichem zugverhalten. J Ornithol 115:251–272CrossRefGoogle Scholar
  10. Berthold P (1988a) Wegzugbeginn und einsetzen der zugunruhe bei 19 vogelpopulationen—eine vergleichende untersuchung. J Ornithol 131:217–222Google Scholar
  11. Berthold P (1988b) The control of migration in european warblers. Acta XIX. Congressus Internationalis Ornithologica. Ottawa 1986:215–49Google Scholar
  12. Berthold P (1991) Orientation in birds. Birkhäuser, BaselCrossRefGoogle Scholar
  13. Berthold P, Querner U (1981) Genetic basis of migratory behaviour in european warblers. Science 212:77–79CrossRefPubMedGoogle Scholar
  14. Berthold P, Gwinner E, Klein H, Westrich P (1972) Beziehung zwischen zugunruhe und zugablauf bei garten- und mönchsgrasmücken (Sylvia borin und S. atricapilla). Z Tierpsychol 30:26–32CrossRefGoogle Scholar
  15. Bolte P, Bleibaum F, Einwich A, Günther A, Liedvogel M, Heyers D, Depping A, Wöhlbrand L, Rabus R, Janssen-Bienhold U, Mouritsen H (2016) Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS One 11:e0147819CrossRefPubMedCentralPubMedGoogle Scholar
  16. Boström JE, Fransson T, Henshaw I, Jakobsson S, Kullberg C, Åkesson S (2010) Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behav Ecol Sociobiol 64:1725–1732CrossRefGoogle Scholar
  17. Boström JE, Åkesson S, Alerstam T (2012) Where on earth can animals use a geomagnetic bicoordinate map for navigation? Ecography 35:1039–1047CrossRefGoogle Scholar
  18. Bottjer SW, Arnold AP (1982) Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): localization with horseradish peroxidase. J Comp Neurol 210:190–197CrossRefPubMedGoogle Scholar
  19. Bout RG, Dubbeldam JL (1985) An HRP study of the central connections of the facial nerve in the mallard (Anas platyrhynchos L.). Acta Morphol Neerl Scand 23:181–93PubMedGoogle Scholar
  20. Bulte M, Bairlein F (2013) Endogenous control of migratory behaviour in alaskan northern wheatears. J Ornithol 154:567–570CrossRefGoogle Scholar
  21. Bulte M, Heyers D, Mouritsen H, Bairlein F (2017) Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J Avian Biol 48:75–82CrossRefGoogle Scholar
  22. Chernetsov N (2017) Compass systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. doi: 10.1007/s00359-016-1140-x PubMedGoogle Scholar
  23. Chernetsov N, Kishkinev D, Gashkov S, Kosarev V, Bolshakov CV (2008a) Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from siberia implies a detour around central Asia. Anim Behav 75:539–545CrossRefGoogle Scholar
  24. Chernetsov N, Kishkinev D, Mouritsen H (2008b) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190CrossRefPubMedGoogle Scholar
  25. Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408CrossRefPubMedGoogle Scholar
  26. Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migrating passerine: the northern wheatear Oenanthe oenanthe. Ardea 94:593–605Google Scholar
  27. Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol $$$Sociobiol 62:1069–78CrossRefGoogle Scholar
  28. Dubbeldam JL (1980) Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynchos L. II. morphology of the principal sensory nucleus. J Comp Neurol 191:557–571CrossRefPubMedGoogle Scholar
  29. Dubbeldam JL, Karten HJ, Menken SB (1976) Central projections of the chorda tympani nerve in the mallard, Anas platyrhynchos L. J Comp Neurol 170:415–420CrossRefPubMedGoogle Scholar
  30. Dubbeldam JL, Brus ER, Menken SB, Zeilstra S (1979) The central projections of the glossopharyngeal and vagus ganglia in the mallard, Anas platyrhynchos L. J Comp Neurol 183:149–168CrossRefPubMedGoogle Scholar
  31. Eikenaar C, Klinner T, Szostek KL, Bairlein F (2014) Migratory restlessness in captive individuals predicts actual departure in the wild. Biol Lett 10:20140154CrossRefPubMedCentralPubMedGoogle Scholar
  32. Eikenaar C, Fritzsch A, Kämpfer S, Schmaljohann H (2016) Migratory restlessness increases and refuelling rate decreases over the spring migration season in northern wheatears. Anim Behav 112:75–81CrossRefGoogle Scholar
  33. Elbers D, Bulte M, Bairlein F, Mouritsen H, Heyers D (2017) Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe) J Comp Physiol A Neuroethol Sens Neural Behav Physiol. doi: 10.1007/s00359-017-1167-7
  34. Engels S, Hein CM, Lefeldt N, Prior H, Mouritsen H (2012) Night-migratory songbirds possess a magnetic compass in both eyes. PloS One 7:e43271CrossRefPubMedCentralPubMedGoogle Scholar
  35. Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS One 5:9231CrossRefGoogle Scholar
  36. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360CrossRefPubMedGoogle Scholar
  37. Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineralbased magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften 94:631–642CrossRefPubMedGoogle Scholar
  38. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36CrossRefPubMedGoogle Scholar
  39. Gwinner E (1990) Bird migration: physiology and ecophysiology. Springer, BerlinCrossRefGoogle Scholar
  40. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48PubMedGoogle Scholar
  41. Hein CM, Zapka M, Heyers D, Kutzschbauch S, Schneider NL, Mouritsen H (2010) Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J R Soc Interface 7(Suppl 2):S227–S233CrossRefPubMedGoogle Scholar
  42. Hein CM, Engels S, Kishkinev D, Mouritsen H (2011) Robins have a magnetic compass in both eyes. Nature 471:E11CrossRefPubMedGoogle Scholar
  43. Henshaw I, Fransson T, Jakobsson S, Kullberg C (2010) Geomagnetic field affects spring migratory direction in a long distance migrant. Behav Ecol Sociobiol 64:1317–1323CrossRefGoogle Scholar
  44. Heyers D, Manns M, Luksch H, Gűntűrkűn O, Mouritsen H (2007) A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PloS One 2:937CrossRefGoogle Scholar
  45. Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H (2010) Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc Nat Acad Sci USA 107:9394–9CrossRefPubMedCentralPubMedGoogle Scholar
  46. Holland RA (2010) Differenatial effects of magnetic pulses on the orientation of naturally migrating birds. J R Soc Interface 7:1617–1625CrossRefPubMedCentralPubMedGoogle Scholar
  47. Holland RA (2014) True navigation in birds: from quantum physics to global migration. J Zool 293:1–15CrossRefGoogle Scholar
  48. Holland RA, Helm B (2013) A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 10:20121047CrossRefPubMedCentralPubMedGoogle Scholar
  49. Hore PJ, Mouritsen H (2016) The radical pair mechanism of magnetoreception. Annu Rev Biophys 45:299–344CrossRefPubMedGoogle Scholar
  50. Kattnig DR, Evans EW, Dejean V, Dodson CA, Wallace MI, Mackenzie SR, Timmel CR, Hore PJ (2016) Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nat Chem 8:384–91CrossRefPubMedGoogle Scholar
  51. Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201CrossRefPubMedGoogle Scholar
  52. Kishkinev D (2015) Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J Ornithol 156:S145–S161CrossRefGoogle Scholar
  53. Kishkinev D, Chernetsov N, Mouritsen H (2010) A double clock or jetlag mechanism is unlikely to be involved in detection of east-west displacements in a long-distance avian migrant. Auk 127:773–780CrossRefGoogle Scholar
  54. Kishkinev D, Chernetsov N, Heyers D, Mouritsen H (2013) Migratory reed warblers need intact trigeminal nerves to compensate for a 1000 km displacement. PLoS One 8:e65847CrossRefPubMedCentralPubMedGoogle Scholar
  55. Kishkinev D, Chernetsov N, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R822–R824CrossRefPubMedGoogle Scholar
  56. Kullberg C, Lind J, Fransson T, Jakobsson S, Valin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc Roy Soc B 270:373–8CrossRefGoogle Scholar
  57. Kullberg C, Henshaw I, Jakobson S, Johansson P, Fransson T (2007) Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc Roy Soc B 274:2145–51CrossRefGoogle Scholar
  58. Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H (2014) Magnetic field-driven induction of zenk in the trigeminal system of pigeons (Columba livia). J R Soc Interface 11:20140777CrossRefPubMedCentralPubMedGoogle Scholar
  59. Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H (2007a) Lateralized activation of cluster n in the brains of migratory songbirds. Eur J Neurosci 25:1166–1173CrossRefPubMedCentralPubMedGoogle Scholar
  60. Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H (2007b) Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS One 2:e1106CrossRefPubMedCentralPubMedGoogle Scholar
  61. Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA 109:4774–4779CrossRefPubMedCentralPubMedGoogle Scholar
  62. Maggini I, Bairlein F (2010) Endogenous rhythms of seasonal migratory body mass change and nocturnal restlessness in different populations of northern wheatear Oenanthe oenanthe. J Biol Rhythms 25:268–276CrossRefPubMedGoogle Scholar
  63. Mewaldt R (1964) California sparrows return from displacement to maryland. Science 146:941–942CrossRefPubMedGoogle Scholar
  64. Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511CrossRefPubMedGoogle Scholar
  65. Mouritsen H (1998) Compasses and orientational strategies of night migrating passerine birds. Odense University, OdenseGoogle Scholar
  66. Mouritsen H (2003) Spatiotemporal orientation strategies of long-distance migrants. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 493–513CrossRefGoogle Scholar
  67. Mouritsen H (2012) Sensory biology: search for the compass needles. Nature 484:320–321CrossRefPubMedGoogle Scholar
  68. Mouritsen H (2013) The magnetic senses. In: Galizia G, Lledo PM (eds) Neurosciences-from molecule to behaviour: a university textbook. Springer, Berlin, pp 427–443CrossRefGoogle Scholar
  69. Mouritsen H (2015) Magnetoreception and its use for long-distance migration. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn Elsevier, Amsterdam, pp 113–33CrossRefGoogle Scholar
  70. Mouritsen H, Mouritsen O (2000) A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J Theor Biol 207:283–291CrossRefPubMedGoogle Scholar
  71. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299CrossRefPubMedCentralPubMedGoogle Scholar
  72. Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci USA 102:8339–8344CrossRefPubMedCentralPubMedGoogle Scholar
  73. Mouritsen H, Heyers D, Güntürkün O (2016) The neural basis of long-distance navigation in birds. Annu Rev Physiol 78:133–154CrossRefPubMedGoogle Scholar
  74. Mukhin A, Kosarev V, Ktitorov P (2005) Nocturnal life of songbirds well before migration. Proc Biol Sci 272:1535–1539CrossRefPubMedCentralPubMedGoogle Scholar
  75. Munro U, Munro JA, Phillips JB, Wiltschko R, Wiltschko W (1997) Evidence for a magnetite-based navigational ‘map’ in birds. Naturwissenschaften 84:26–28CrossRefGoogle Scholar
  76. Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6:e20091CrossRefPubMedCentralPubMedGoogle Scholar
  77. Niessner C, Gross JC, Denzau S, Peichl L, Fleissner G, Wiltschko W, Wiltschko R (2016) Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLoS One 11:e0150377CrossRefPubMedCentralPubMedGoogle Scholar
  78. Perdeck AC (1958) Two types of orientation in migrating starlings, Sturnus vulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 46:1–37Google Scholar
  79. Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319CrossRefGoogle Scholar
  80. Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F (2005) Is there a “migratory syndrome” common to all migrant birds? Ann N Y Acad Sci 1046:282–293CrossRefPubMedGoogle Scholar
  81. Rabøl J (1978) One-direction orientation versus goal area navigation in migratory birds. Oikos 30:216–223CrossRefGoogle Scholar
  82. Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support in migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122CrossRefPubMedGoogle Scholar
  83. Schmaljohann H, Kämpfer S, Fritzsch A, Kima R, Eikenaar C (2015) Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds. Behav Ecol Sociobiol 69:909–914CrossRefGoogle Scholar
  84. Schwarze S, Steenken F, Thiele N, Kobylkov D, Lefeldt N, Dreyer D, Schneider NL, Mouritsen H (2016) Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Sci Rep 6:33805CrossRefPubMedCentralPubMedGoogle Scholar
  85. Thorup KT, Bisson IA, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental u.s. in a migratory songbird. Proc Natl Acad Sci USA 104:18115–18119CrossRefPubMedCentralPubMedGoogle Scholar
  86. Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370PubMedGoogle Scholar
  87. Treiber CD, Salzer M, Breuss M, Ushakova L, Lauwers M, Edelman N, Keays DA (2013) High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Commun Integr Biol 6:e24859CrossRefPubMedCentralPubMedGoogle Scholar
  88. Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205:1027–1029CrossRefPubMedGoogle Scholar
  89. Wild JM (1981) Identification and localization of the motor nuclei and sensory projections of the glossopharyngeal, vagus, and hypoglossal nerves of the cockatoo (Cacatua roseicapilla), Cacatuidae. J Comp Neurol 203:351–377CrossRefPubMedGoogle Scholar
  90. Wild JM (1990) Peripheral and central terminations of hypoglossal afferents innervating lingual tactile mechanoreceptor complexes in fringillidae. J Comp Neurol 298:157–171CrossRefPubMedGoogle Scholar
  91. Wild JM, Zeigler HP (1996) Central projections and somatotopic organisation of trigeminal primary afferents in pigeon (Columba livia). J Comp Neurol 368:136–152CrossRefPubMedGoogle Scholar
  92. Wild JM, Kubke MF, Carr CE (2001) Tonotopic and somatotopic representation in the nucleus basalis of the barn owl, Tyto alba. Brain Behav Evol 57:39–62CrossRefPubMedGoogle Scholar
  93. Wiltschko W, Wiltschko R (1972) Magnetic compass of migratory birds. Science 176:62–64CrossRefPubMedGoogle Scholar
  94. Wiltschko W, Wiltschko R (1992) Migratory orientation: magnetic compass orientation of garden warblers (Sylvia borin) after a simulated crossing of the magnetic equator. Ethology 91:70–74CrossRefGoogle Scholar
  95. Wiltschko R, Wiltschko W (2013) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:89–98CrossRefPubMedGoogle Scholar
  96. Wiltschko W, Munro U, Ford H, Wiltschko R (2009) Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc Biol Sci 276:2227–2232CrossRefPubMedCentralPubMedGoogle Scholar
  97. Yohannes E, Biebach H, Nikolaus G, Pearson DJ (2009) Passerine migration strategies and body mass variation along geographic sectors across east africa, the middle east and the arabian peninsula. J Ornithol 150:369–381CrossRefGoogle Scholar
  98. Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1278CrossRefPubMedGoogle Scholar
  99. Zapka M, Heyers D, Liedvogel M, Jarvis ED, Mouritsen H (2010) Night-time neuronal activation of cluster n in a day- and night-migrating songbird. Eur J Neurosci 32:619–624CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.AG Animal Navigation, Faculty of Biology/Environmental SciencesUniversity of OldenburgOldenburgGermany
  2. 2.Research Centre for Neurosensory SciencesUniversity of OldenburgOldenburgGermany
  3. 3.AG Biochemistry, Faculty of Medicine/Health SciencesUniversity of OldenburgOldenburgGermany
  4. 4.AugsburgGermany
  5. 5.Institute for Avian Research “Vogelwarte Helgoland”WilhelmshavenGermany

Personalised recommendations