Journal of Comparative Physiology A

, Volume 203, Issue 6–7, pp 455–463 | Cite as


  • Roswitha Wiltschko


Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational ‘map’; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.


Migration program True navigation Navigational ‘map’ Magnetic intensity Olfactory input 


  1. Able KP, Able MA (1990a) Ontogeny of migratory orientation in the savannah sparrow, Passerulus sanswichensis: calibration of the magnetic compass. Anim Behav 39:903–913Google Scholar
  2. Able KP, Able MA (1990b) Calibration of the magnetic compass of a migratory birds by celestial rotation. Nature 347:378–380CrossRefGoogle Scholar
  3. Alerstam T (1987) Bird migration across a strong magnetic anomaly. J Exp Biol 130:63–86Google Scholar
  4. Baccetti N, Serra L, Cherubini G, Magnani A (1999) Zeitpunkt der Festlegung von Bindungen an das Winterquartier nach Ergebnissen von Verfrachtungsexperimenten an Alpenstrandläufern (Calidris alpina). J Ornithol 140:309–317CrossRefGoogle Scholar
  5. Baillon F, Benvenuti S, Ioalè P (1992) Fidelity to non-breeding sites in some species of birds in Senegal. Trop Zool 5:31–43CrossRefGoogle Scholar
  6. Baker RR (1993) The function of post-fledging exploration: a pilot study of three species of passerines ringed in Britain. Ornis Scand 24:71–79CrossRefGoogle Scholar
  7. Beason RC, Wiltschko W (2015) Cues indicating location in pigeon navigation. J Comp Physiol A 201:961–967CrossRefGoogle Scholar
  8. Beason RC, Dussourd N, Deutschlander M (1995) Behavioral evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–146PubMedGoogle Scholar
  9. Beck W, Wiltschko W (1982) The magnetic field as a reference system for the generically encoded migratory direction in pied flycatchers (Ficedula hypoleuca PALLAS). Z Tierpsychol 60:41–46CrossRefGoogle Scholar
  10. Benvenuti S, Fiaschi V (1983) Pigeon homing: combined effect of olfactory deprivation and visual impairment. Comp Biochem Physiol 76 A:719–725CrossRefGoogle Scholar
  11. Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis 115:594–599CrossRefGoogle Scholar
  12. Berthold P (1985) Vergleichende Untersuchung von Jugendentwicklung und Zugverhalten bei Garten- und Hausrotschwanz, Phoenicurus phoenicurus und P. ochurus. J Ornithol 126:383–392CrossRefGoogle Scholar
  13. Berthold P (1988) The control of migration in European warblers. Acta XIX Congr Internat Ornithol, Ottawa, pp 215–249Google Scholar
  14. Berthold P, Querner U (1981) Genetic basis of migratory behavior in European warblers. Science 212:77–79CrossRefPubMedGoogle Scholar
  15. Bingman VP (1983) Magnetic field orientation of migratory savannah sparrows with different first summer experience. Behaviour 87:43–55CrossRefGoogle Scholar
  16. Bingman VP (1984) Night sky orientation of migratory pied flycatchers raised in different magnetic fields. Behav Ecol Sociobiol 15:77–80CrossRefGoogle Scholar
  17. Bletz H, Weindler P, Wiltschko R, Wiltschko W, Berthold P (1996) The magnetic field as reference for the innate migratory direction in blackcaps, Sylvia atricapilla. Naturwissenschaften 83:430–432Google Scholar
  18. Bulte M, Bairlein F (2013) Endogenous control of migratory behavior in Alaskan northern wheatear. J Ornithol 154:567–570CrossRefGoogle Scholar
  19. Chernetsov N, Kishkinev D, Gashko, S, Kosarrev V, Bolshakov CV (2008a) Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia. Anim Behav 75:539–545CrossRefGoogle Scholar
  20. Chernetsov N, Kishkinev D, Mouritsen H (2008b) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190CrossRefPubMedGoogle Scholar
  21. Curry-Lindahl K (1982) Vogelzug. Paul Parey, Berlin HamburgGoogle Scholar
  22. Delmore KE, Irwin DE (2014) Hybrid songbirds employ intermediate routes in a migratory divide. Ecol Lett 17:1211–1218CrossRefPubMedGoogle Scholar
  23. Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 274:1153–1158CrossRefPubMedPubMedCentralGoogle Scholar
  24. Deutschlander ME, Phillips JB, Munro U (2012) Age-dependent orientation of magnetically-simulated geographic displacements in migratory Australian silvereyes (Zosterops l. lateralis). Wilson. J Ornithol 124:467–477Google Scholar
  25. Dorst J (1961) The migration of birds. Heinemann, TorontoGoogle Scholar
  26. Drost R (1938) Über den Einfluß von Verfrachtungen zur Herbstzugzeit auf den Sperber, Accipiter nisus (L.). Zugleich ein Beitrag zur Frage nach der Orientierung der Vögel auf dem Zug ins Winterquartier. IX Congrès Ornithol. Internat, Rouen, pp. 503–521Google Scholar
  27. Emlen ST (1970) Celestial rotation: its importance in the development of migratory orientation. Science 170:1198–1201CrossRefPubMedGoogle Scholar
  28. Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216:2165–2171CrossRefPubMedGoogle Scholar
  29. Gagliardo A, Ioalè P, Savini M, Wild M (2009) Navigational abilities of adult and experienced homing pigeons deprived of olfactory or trigeminally mediated magnetic information. J Exp Biol 212:3119–3124CrossRefPubMedGoogle Scholar
  30. Gwinner E (1968) Artspezifische Muster der Zugunruhe bei Laubsängern und ihre mögliche Bedeutung für die Beendigung des Zuges im Winterquartier. Z Tierpsychol 25:843–853CrossRefGoogle Scholar
  31. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in the migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125:267–273CrossRefGoogle Scholar
  32. Gwinner E, Schwabl H, Schwabl-Benzinger I (1992) The migratory time program of the Garden Warbler: is there compensation for interruptions? Ornis Scand 23:264–270CrossRefGoogle Scholar
  33. Hartwick RF, Foà A, Papi F (1977) The effect of olfactory deprivation by nasal tubes upon homing behavior in pigeons. Behav Ecol Sociobiol 2:81–89CrossRefGoogle Scholar
  34. Helbig AJ (1991) Inheritance of the migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla). Behav Ecol Sociobiol 28:9–12CrossRefGoogle Scholar
  35. Helbig AJ (1992) Ontogenetic stability of inherited migratory directions in a nocturnal bird migrant: comparison between the first and second year of life. Ethol Ecol Evol 4:375–388CrossRefGoogle Scholar
  36. Helbig AJ, Berthold P, Wiltschko W (1989) Migratory orientation of blackcaps (Sylvia atricapilla): population-specific shifts of direction during the autumn. Ethology 82:307–315CrossRefGoogle Scholar
  37. Henshaw I, Fransson T, Jakobsson, Kullberg C (2010) Geomagnetic field affects spring migratory direction in a long distance migrant. Behav Ecol Sociobiol 64:1317–1323CrossRefGoogle Scholar
  38. Holland RA (2010) Differential effects of magnetic pulses on the orientation of naturally migrating birds. J R Soc Interface 7:1617–1625CrossRefPubMedPubMedCentralGoogle Scholar
  39. Holland RA, Helm B (2013) A strong magnetic pulse affects the precision of departure directions of naturally migrating adult but not juvenile bird. J R Soc Interface 10:20121047CrossRefPubMedPubMedCentralGoogle Scholar
  40. Holland RA, Thorup K, Gagliardo A, Bisson IA, Knecht E, Mizrahi D, Wikelski M (2009) Testing the role of sensory systems in the migratory heading of a songbird. J Exp Biol 212:4065–4071CrossRefPubMedGoogle Scholar
  41. Jorge PE, Marques AE, Phillips JB (2009) Activational rather than navigational effects of odors on homing of young pigeons. Curr Biol 19:650–654CrossRefPubMedGoogle Scholar
  42. Jorge PE, Marques PAM, Phillips JB (2010). Activational effects of odours on avian navigation Proc R Soc B 277:45–49CrossRefPubMedGoogle Scholar
  43. Keeton WT (1973) Release site bias as a possible guide to the “map” component in pigeon homing. J Comp Physiol 86:1–16CrossRefGoogle Scholar
  44. Keeton WT (1974) The orientational and navigational basis of homing in birds. Adv Study Behav 5:47–132CrossRefGoogle Scholar
  45. Kishkinev D, Chernetsov N, Heyers D, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R811–R826CrossRefGoogle Scholar
  46. Kishkinev D, Heyers D, Woodworth BK, Mitchell GW, Hobson KA, Norris DR (2016) Experienced migratory songbirds do not display goal-ward orientation after release following a cross-continental displacement: an automated telemetry study. Sci Rep 6:37226CrossRefGoogle Scholar
  47. Krätzig H, Schüz E (1936) Ergebnis der Versetzung ostbaltischer Stare ins Binnenland. Vogelzug 7:164–175 Google Scholar
  48. Mead CJ, Harrison JD (1979) Sand martin movements within Britain and Ireland. Bird Study 26:73–86CrossRefGoogle Scholar
  49. Mewald LR (1964) California sparrows return from displacement to Maryland. Science 146:941–942CrossRefGoogle Scholar
  50. Michalik A, Alert B, Engels S, Lefeldt N, Mouritsen H (2014) Star compass learning: how long does it take? J Ornithol 155:225–234CrossRefGoogle Scholar
  51. Morton ML, Wakamatsu MW, Pereyra ME, Morton GA (1991) Postfledgling dispersal, habitat imprinting and philopatry in a montane migratory sparrow. Ornis Scand 22:98–106CrossRefGoogle Scholar
  52. Mukhin A (2004) Night movements of young reed warblers in summer—is it postfledging dispersal? Auk 121:203–209CrossRefGoogle Scholar
  53. Munro U, Wiltschko W, Ford H (1993) Changes in the migratory direction of yellow-faced honeyeaters, Lichenostomus chrysops (Meliphagidae), during autumn migration. Emu 93:59–62CrossRefGoogle Scholar
  54. Munro U, Munro JA, Phillips JB, Wiltschko R, Wiltschko W (1997) Evidence for a magnetite-based navigational `map’ in birds. Naturwissenschaften 84:6–28CrossRefGoogle Scholar
  55. Perdeck AC (1958) Two types of orientation in migrating starlings, Sturnus vulgaris L., and Chaffinches, Fringilla coelebs L. as revealed by displacement experiments. Ardea 46:1–37Google Scholar
  56. Perdeck AC (1967) Orientation of starlings after displacement to Spain. Ardea 55:194–202Google Scholar
  57. Perdeck AC (1974) An experiment on the orientation of juvenile starlings during spring migration. Ardea 62:190–195Google Scholar
  58. Perdeck AC (1983) An experiment on the orientation of juvenile Starlings during spring migration: an addendum. Ardea 71:255Google Scholar
  59. Prinz K, Wiltschko W (1992) Migratory orientation of pied flycatchers: interaction of stellar and magnetic information during ontogeny. Anim Behav 44:539–545CrossRefGoogle Scholar
  60. Ralph CJ, Mewald LR (1975) Timing of site fixation upon wintering grounds in sparrows. Auk 92:698–705CrossRefGoogle Scholar
  61. Rowan W (1946) Experiments in bird migration. Trans R Soc Can Sec V 40:123–135Google Scholar
  62. Rüppell W (1944) Versuche über Heimfinden ziehender Nebelkrähen nach Verfrachtung. J Ornithol 92:106–132CrossRefGoogle Scholar
  63. Rüppell W, Schüz E (1948) Ergebnis der Verfrachtung von Nebelkrähen (Corvus corone cornix) während des Wegzugs. Vogelwarte 15:30–36Google Scholar
  64. Schiffner I, Fuhrmann P, Wiltschko R (2011) Tracking pigeons in a magnetic anomaly and in magnetically ‘quiet’ terrain. Naturwissenschaften 9:575–581CrossRefGoogle Scholar
  65. Shumakov ME (1990) The development of orientation capabilities of young night-migrants under natural and experimental conditions. In: Viksne J, Vilks I (eds) Baltic Birds, vol 5. Riga, pp 146–149Google Scholar
  66. Thorup K, Bisson IA, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental U.S. in migratory songbird. Proc Natl Acad Sci USA 104:18115–18119CrossRefPubMedPubMedCentralGoogle Scholar
  67. Thorup K, Ortvad TE, Rabøl J, Holland RA, Tottrup AP, Wikelski M (2011) Juvenile songbirds compensate for displacement to oceanic islands during autumn migration. PLoS One 6:e17903CrossRefPubMedPubMedCentralGoogle Scholar
  68. Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter in pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 143–151CrossRefGoogle Scholar
  69. Walcott C (2005) Multi-modal orientation cues in homing pigeons. Integr Comp Biol 45:574–581CrossRefPubMedGoogle Scholar
  70. Wallraff HG (1974) Das Navigationssystem der Vögel. Ein theoretischer Beitrag zur Analyse ungeklärter Orientierungsleistungen. Oldenbourg, München WienGoogle Scholar
  71. Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204CrossRefGoogle Scholar
  72. Weindler P, Wiltschko R, Wiltschko W (1996) Magnetic information affects the stellar orientation of young bird migrants. Nature 383:158–160CrossRefGoogle Scholar
  73. Wikelski M, Arriero E, Gagliardo A, Holland RA, Huttunen MJ, Juvaste R, Mueller I, Tertitski G, Thorup K, Wild M, Alanko M, Bairlein F, Cherenkov A, Cameron A, Flatz R, Hannila J, Hüppop O, Kangasniemi M, Kranstauber B, Penttinen M-L, Safi K, Semashko V, Schmid H, Wistbacka R (2015) True navigation in migrating gulls requires intact olfactory nerves. Sci Rep 5:17061Google Scholar
  74. Willemoes M, Blas J, Wikelski M, Thorup K (2015) Flexible navigation response in common cuckoos Cuculus canorus displaced experimentally during migration. Sci Rep 5:16402CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wiltschko R (1992) Das Verhalten verfrachteter Vögel. Vogelwarte 36:249–310Google Scholar
  76. Wiltschko W, Gwinner E (1974) Evidence for an innate magnetic compass in garden warblers. Naturwissenschaften 61:406CrossRefPubMedGoogle Scholar
  77. Wiltschko R, Wiltschko W (2015) Avian navigation: a combination of innate and learned mechanisms. Adv Study Behav 47:229–310CrossRefGoogle Scholar
  78. Wiltschko W, Wiltschko R (2017) Homing pigeons as a model for avian navigation? J Avian Biol 48:66–74CrossRefGoogle Scholar
  79. Wiltschko W, Gwinner E, Wiltschko R (1980) The effect of celestial cues on the ontogeny of non-visual orientation in the garden warbler (Sylvia borin). Z Tierpsychol 53:1–8CrossRefPubMedGoogle Scholar
  80. Wiltschko W, Munro U, Beason RC, Ford H, Wiltschko R (1994) A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50:697–700CrossRefGoogle Scholar
  81. Wiltschko W, Munro U, Ford H, Wiltschko R (1998) Effect of a magnetic pulse on the orientation of Silvereyes, Zosterops l. lateralis, during spring migration. J Exp Biol 201:3257–3261PubMedGoogle Scholar
  82. Wiltschko W, Munro U, Ford H, Wiltschko R (2006) Bird navigation: what type of information does the magnetite-based receptor provide? Proc R Soc B 273:2815–2850CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010) The role of the magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:534–1538CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.FB BiowissenschaftenGoethe-Universität Frankfurt, BiologicumFrankfurt am MainGermany

Personalised recommendations