Journal of Comparative Physiology A

, Volume 203, Issue 1, pp 35–43 | Cite as

Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field

Original Paper


Orientation by magnetic cues appears to be adaptive during animal migrations. Whereas the magnetic orientation in birds, mammals, and urodele amphibians is being investigated intensively, the data about anurans are still scarce. This study tests whether marsh frogs could determine migratory direction between the breeding pond and the wintering site by magnetic cues in the laboratory. Adult frogs (N = 32) were individually tested in the T-maze 127 cm long inside the three-axis Helmholtz coil system (diameter 3 m). The arms of the maze were positioned parallel to the natural migratory route of this population when measured in accordance with magnetic field. The frogs were tested under two-motivational conditions mediated by temperature/light regime: the breeding migratory state and the wintering state. The frogs’ choice in a T-maze was evident only when analyzed in accordance with the direction of the magnetic field: they moved along the migratory route to the breeding pond and followed the reversion of the horizontal component of the magnetic field. This preference has been detected in both sexes only in the breeding migratory state. This suggests that adult ranid frogs can obtain directional information from the Earth’s magnetic field as was shown earlier in urodeles and anuran larvae.


Anuran amphibians Magnetic compass Migration Orientation Motivation 



We would like to thank A.V. Spassky and V.M. Lebedev (Skobeltsyn Institute of Nuclear Physics of MSU) for the technical assistance while working with Helmholtz coil system. We are also thankful to A.P. Golovlev, A.S. Dubrovskaya, and E.E. Gritsyshina for their help during the experiments. Magnetometer GI MTS-1 was kindly provided by N.S. Chernetsov from Zoological Institute RAS. The work of V.V. Shakhparonov was financed by Grant mol_a 14-04-32243 from the Russian Foundation for Basic Research. Bartington Mag658 Digital Three-Axis Fluxgate Magnetometer was obtained with the support of the Russian Science Foundation, Grant No. 14-50-00029 “Scientific Basis of the National Biobank—Depository of the Living Systems”. The Helmholtz coil system was kindly provided in accordance with the Program of Development of Lomonosov Moscow State University. We are grateful to two anonymous reviewers for very useful comments that greatly improved the presentation of the material and to Maria Wilding for her kind assistance in the editing of the English language of the manuscript. All applicable international, national, and institutional guidelines for the care and use of animals were followed, including “Guidelines for accommodation and care of animals” of the “European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes” (ETS No. 123) and “Guidelines for the treatment of animals in behavioral research and teaching” produced by the Association for the Study of Animal Behavior and the Animal Behavior Society (Animal Behavior (2012) 83:301–309). This study was conducted in agreement with the legislation of the Russian Federation and with the requirements of the Committee for Bio Ethics of Lomonosov Moscow State University.


  1. Adler K (1980) Individuality in the use of orientation cues by green frogs. Anim Behav 28:413–425. doi: 10.1016/S0003-3472(80)80050-9 CrossRefGoogle Scholar
  2. Adler K (1982) Sensory aspects of amphibian navigation and compass orientation. Vertebr Hung 21:7–18Google Scholar
  3. Alexandrovskaya T, Bikov D (1979) The distribution of green frogs in the European part of the USSR. In: Proceedings of VII zoogeographic conference, Moscow, pp 279–281 (in Russian) Google Scholar
  4. Deutschlander ME, Phillips JB, Borland SC (1999) The case for light-dependent magnetic orientation in animals. J Exp Biol 202:891–908PubMedGoogle Scholar
  5. Diego-Rasilla FJ (2003) Homing ability and sensitivity to the geomagnetic field in the alpine newt, Triturus alpestris. Ethol Ecol Evol 15:251–259. doi: 10.1080/08927014.2003.9522670 CrossRefGoogle Scholar
  6. Diego-Rasilla J, Luengo R (2002) Celestial orientation in the marbled newt (Triturus marmoratus). J Ethol 20:137–141. doi: 10.1007/s10164-002-0066-7 CrossRefGoogle Scholar
  7. Diego-Rasilla FJ, Luengo RM, Phillips JB (2010) Light-dependent magnetic compass in Iberian green frog tadpoles. Naturwissenschaften 97:1077–1088. doi: 10.1007/s00114-010-0730-7 CrossRefPubMedGoogle Scholar
  8. Diego-Rasilla FJ, Luengo RM, Phillips JB (2013) Use of a light-dependent magnetic compass for Y-axis orientation in European common frog (Rana temporaria) tadpoles. J Comp Physiol A 199:619–628. doi: 10.1007/s00359-013-0811-0 CrossRefGoogle Scholar
  9. Eilam D (2003) Open-field behavior withstands drastic changes in arena size. Behav Brain Res 142:53–62. doi: 10.1016/S0166-4328(02)00382-0 CrossRefPubMedGoogle Scholar
  10. Ferguson DE, McKeown JP, Bosarge OS, Landreth HF (1968) Sun-compass orientation of bullfrogs. Copeia 1968:230. doi: 10.2307/1441746 CrossRefGoogle Scholar
  11. Freake MJ, Phillips JB (2005) Light-dependent shift in bullfrog tadpole magnetic compass orientation: evidence for a common magnetoreception mechanism in anuran and urodele amphibians. Ethology 111:241–254. doi: 10.1111/j.1439-0310.2004.01067.x CrossRefGoogle Scholar
  12. Freake MJ, Borland SC, Phillips JB (2002) Use of a magnetic compass for Y-axis orientation in larval bullfrogs, Rana catesbeiana. Copeia 2002:466–471. doi:10.1643/0045-8511(2002)002[0466:UOAMCF]2.0.CO;2Google Scholar
  13. Grant D, Anderson O, Twitty V (1968) Homing orientation by olfaction in newts (Taricha rivularis). Science 160:1354–1356. doi: 10.1126/science.160.3834.1354 CrossRefPubMedGoogle Scholar
  14. Grubb JC (1973a) Olfactory orientation in breeding mexican toads, Bufo valliceps. Copeia 1973:490. doi: 10.2307/1443114 CrossRefGoogle Scholar
  15. Grubb JC (1973b) Olfactory orientation in Bufo woodhousei fowleri, Pseudacris clarki and Pseudacris streckeri. Anim Behav 21:726–732. doi: 10.1016/S0003-3472(73)80098-3 CrossRefPubMedGoogle Scholar
  16. Kim JW, Im WB, Choi HH et al (1998) Seasonal fluctuations in pituitary gland and plasma levels of gonadotropic hormones in Rana. Gen Comp Endocrinol 109:13–23. doi: 10.1006/gcen.1997.6992 CrossRefPubMedGoogle Scholar
  17. Kirschvink JL, Jones DS, MacFadden BJ (eds) (1985) Magnetite biomineralization and magnetoreception in organisms, 1st edn. Springer, BostonGoogle Scholar
  18. Kishkinev D, Chernetsov N, Pakhomov A et al (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R822–R824. doi: 10.1016/j.cub.2015.08.012 CrossRefPubMedGoogle Scholar
  19. Kuzmin SL (2013) The Amphibians of the Former Soviet Union, 2nd edn Revised. Pensoft Publishers, Sofia – MoscowGoogle Scholar
  20. Lada GA, Borkin LJ, Vinogradov AE (1995) Distribution, population systems and reproductive behavior of green frogs (hybridogenetic Rana esculenta complex) in the Central Chernozem Territory of Russia. Russ J Herpetol 2:46–57Google Scholar
  21. Landler L, Gollmann G (2011) Magnetic orientation of the common toad: establishing an arena approach for adult anurans. Front Zool 8:6. doi: 10.1186/1742-9994-8-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lebedev IV, Pleskacheva MG, Anokhin KV (2012) C57BL/6 mice open field behaviour qualitatively depends on arena size. Zhurnal Vyss Nervn deiatelnosti Im I P Pavlov 62:485–496Google Scholar
  23. Lehner PN (1996) Handbook of ethological methods, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  24. Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the leatherback sea turtle. Biol Bull 185:149. doi: 10.2307/1542138 CrossRefGoogle Scholar
  25. Marhold S, Wiltschko W, Burda H (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423. doi: 10.1007/s001140050422 CrossRefGoogle Scholar
  26. Marty P, Angélibert S, Giani N, Joly P (2005) Directionality of pre- and post-breeding migrations of a marbled newt population (Triturus marmoratus): implications for buffer zone management. Aquat Conserv Mar Freshw Ecosyst 15:215–225. doi: 10.1002/aqc.672 CrossRefGoogle Scholar
  27. Merrell DJ (1970) Migration and gene dispersal in Rana pipiens. Integr Comp Biol 10:47–52. doi: 10.1093/icb/10.1.47 Google Scholar
  28. Mouritsen H (2013) The magnetic senses. In: Galizia CG, Lledo P-M (eds) Neurosciences—from molecule to behavior: a university textbook. Springer, Berlin, pp 427–443CrossRefGoogle Scholar
  29. Mouritsen H (2015) Magnetoreception in birds and its use for long-distance migration. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn. Academic Press, New York, pp 113–133CrossRefGoogle Scholar
  30. Muheim R, Boström J, Åkesson S, Liedvogel M (2014) Sensory mechanisms of animal orientation and navigation. In: Hansson L-A, Åkesson S (eds) Animal movement across scales. Oxford University Press, Oxford, pp 179–194CrossRefGoogle Scholar
  31. Nakazawa H, Ishii S (2000) Changes in the oscillatory electric potential on the olfactory epithelium and in reproductive hormone levels during the breeding season in the toad (Bufo japonicus). Zool Sci 592:585–592. doi: 10.2108/zsj.17.585 CrossRefGoogle Scholar
  32. Nakazawa H, Kaji S, Ishii S (2000) Oscillatory electric potential on the olfactory epithelium observed during the breeding migration period in the japanese toad, Bufo japonicus. Zool Sci 17:293–300. doi: 10.2108/jsz.17.293 PubMedGoogle Scholar
  33. Ogurtsov SV (2004) Olfactory orientation in anuran amphibians. Russ J Herpetol 11:35–40Google Scholar
  34. Ogurtsov SV (2005) Basis of native pond fidelity in anuran amphibians: the case of chemical learning. Russ J Herpetol 12:198–200Google Scholar
  35. Oldham RS (1966) Spring movements in the American toad, Bufo Americanus. Can J Zool 44:63–100. doi: 10.1139/z66-006 CrossRefGoogle Scholar
  36. Phillips J (1986) Two magnetoreception pathways in a migratory salamander. Science 233:765–767. doi: 10.1126/science.3738508 CrossRefPubMedGoogle Scholar
  37. Phillips JB (1987) Laboratory studies of homing orientation in the eastern red-spotted newt, Notophthalmus viridescens. J Exp Biol 131:215–229PubMedGoogle Scholar
  38. Phillips JB, Borland SC (1992) Behavioural evidence for use of a light-dependent magneto reception mechanism by a vertebrate. Nature 359:142–144. doi: 10.1038/359142a0 CrossRefGoogle Scholar
  39. Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magneto reception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552PubMedGoogle Scholar
  40. Phillips JB, Jorge PE, Muheim R (2010) Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface 7(Suppl 2):S241–S256. doi: 10.1098/rsif.2009.0459.focus CrossRefPubMedPubMedCentralGoogle Scholar
  41. Polzonetti-Magni AM, Mosconi G, Carnevali O et al (1998) Gonadotropins and reproductive function in the anuran amphibian, Rana esculenta. Biol Reprod 58:88–93. doi: 10.1095/biolreprod58.1.88 CrossRefPubMedGoogle Scholar
  42. Rastogi RK, Iela L, Delrio G et al (1978) Environmental influence on testicular activity in the green frog, Rana esculenta. J Exp Zool 206:49–63. doi: 10.1002/jez.1402060106 CrossRefGoogle Scholar
  43. Reshetnikov AN (1996) Hygrotactic and olfactory orientation in juvenile common toads (Bufo bufo) during the postmetamorphic period. Adv Amphib Res Former Sov Union 1:181–190Google Scholar
  44. Rozhok A (2008) Orientation and navigation in vertebrates. Springer, BerlinCrossRefGoogle Scholar
  45. Schlegel PA (2007) Spontaneous preferences for magnetic compass direction in the American red-spotted newt, Notophthalmus viridescens (Salamandridae, Urodela). J Ethol 25:177–184. doi: 10.1007/s10164-006-0016-x CrossRefGoogle Scholar
  46. Shakhparonov VV (2012) The influence of repeated experiments on the behavior of the marsh frog (Rana ridibunda) in field experiments of spatial orientation. Zool Zurnal 91:1340–1350Google Scholar
  47. Shakhparonov VV, Ogurtsov SV (2008) Seasonal and geographical variability of orientation behavior in the marsh frog (Rana ridibunda) in search of its own water body. Zool Zurnal 87:1062–1076Google Scholar
  48. Shoop CR (1965) Orientation of Ambystoma maculatum: movements to and from breeding ponds. Science 149:558–559. doi: 10.1126/science.149.3683.558 CrossRefPubMedGoogle Scholar
  49. Sinsch U (1987) Orientation behaviour of toads (Bufo bufo) displaced from the breeding site. J Comp Physiol A 161:715–727CrossRefPubMedGoogle Scholar
  50. Sinsch U (1988a) El sapo andino Bufo spinulosus: análisis preliminar de su orientación hacia sus lugares de reproducción. Bol Lima 57:83–92Google Scholar
  51. Sinsch U (1988b) Seasonal changes in the migratory behaviour of the toad Bufo bufo: direction and magnitude of movements. Oecologia 76:390–398. doi: 10.1007/bf00377034 CrossRefGoogle Scholar
  52. Sinsch U (1990a) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79. doi: 10.1080/08927014.1990.9525494 CrossRefGoogle Scholar
  53. Sinsch U (1990b) The orientation behaviour of three toad species (genus Bufo) displaced from the breeding site. Fortschr Zool 38:75–83Google Scholar
  54. Sinsch U (1992) Amphibians. In: Papi F (ed) Homing animal. Chapman & Hall, London, pp 213–233CrossRefGoogle Scholar
  55. Sinsch U, Kirst C (2015) Homeward orientation of displaced newts (Triturus cristatus, Lissotriton vulgaris) is restricted to the range of routine movements. Ethol Ecol Evol. doi: 10.1080/03949370.2015.1059893 Google Scholar
  56. Taylor DH, Adler K (1973) Spatial orientation by salamanders using plane-polarized light. Science 181:285–287. doi: 10.1126/science.181.4096.285 CrossRefPubMedGoogle Scholar
  57. Voituron Y (2005) Freezing tolerance of the European water frogs: the good, the bad, and the ugly. AJP Regul Integr Comp Physiol 288:R1563–R1570. doi: 10.1152/ajpregu.00711.2004 CrossRefGoogle Scholar
  58. Voituron Y, Eugene M, Barré H (2003) Survival and metabolic responses to freezing by the water frog (Rana ridibunda). J Exp Zool Part A Comp Exp Biol 299A:118–126. doi: 10.1002/jez.a.10285 CrossRefGoogle Scholar
  59. Wells KD (2015) The ecology and behavior of amphibians. The University of Chicago Press, ChicagoGoogle Scholar
  60. Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64. doi: 10.1126/science.176.4030.62 CrossRefPubMedGoogle Scholar
  61. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magneto reception in birds and other animals. J Comp Physiol A 191:675–693. doi: 10.1007/s00359-005-0627-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vladimir V. Shakhparonov
    • 1
  • Sergei V. Ogurtsov
    • 1
  1. 1.Department of Vertebrate Zoology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations