Journal of Comparative Physiology A

, Volume 202, Issue 11, pp 759–781 | Cite as

Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations

Original Paper


Desert locusts (Schistocerca gregaria) sense the plane of dorsally presented polarized light through specialized dorsal eye regions that are likely adapted to exploit the polarization pattern of the blue sky for spatial orientation. Receptive fields of these dorsal rim photoreceptors and polarization-sensitive interneurons are directed toward the upper sky but may extend to elevations below 30°. Behavioral data, however, suggests that S. gregaria is even able to detect polarized light from ventral directions but physiological evidence for this is still lacking. In this study we characterized neurons in the locust brain showing polarization sensitivity at low elevations down to the horizon. In most neurons polarization sensitivity was absent or weak when stimulating from the zenith. All neurons, including projection and commissural neurons of the optic lobe and local interneurons of the central brain, are novel cell types, distinct from polarization-sensitive neurons studied so far. Painting dorsal rim areas in both eyes black to block visual input had no effect on the polarization sensitivity of these neurons, suggesting that they receive polarized light input from the main eye. A possible role of these neurons in flight stabilization or the perception of polarized light reflected from bodies of water or vegetation is discussed.


Polarized light detection Insect brain Optic lobe Flight control Desert locust 



E-vector angle


Antennal mechanosensory and motor center


Dorsal rim area


Electric field vector

IL neurons

Interlobula neurons

IM neurons

Intermedulla neurons

LP neurons

Lobula projection neurons

MEHF neurons

Medulla equatorial horizontal fascicle neurons

MLP neurons

Medulla-lobula projection neurons


Sodium phosphate buffer


Normal goat serum


Phosphate-buffered saline


Phosphate-buffered saline with Triton X-100




POL sensitivity


  1. Batschelet E (1981) Circular statistics in biology. Academic Press, New YorkGoogle Scholar
  2. Bech M, Homberg U, Pfeiffer K (2014) Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 24:2124–2129CrossRefPubMedGoogle Scholar
  3. Beetz MJ, el Jundi B, Heinze S, Homberg U (2015) Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria. J Comp Neurol 523:1589–1607CrossRefPubMedGoogle Scholar
  4. Beetz MJ, Hechavarría JC, Kössl M (2016) Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences. Sci Rep 6:29102. doi:10.1038/srep29102 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bockhorst T, Homberg U (2015) Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. J Neurophysiol 113:3291–3311CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boda P, Horváth G, Kriska G, Blahó M, Csabai Z (2014) Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften 101:385–395CrossRefPubMedGoogle Scholar
  7. Camhi JM (1971) Flight orientation in locusts. Sci Am 225(2):74–81CrossRefPubMedGoogle Scholar
  8. Chung S, Li XR, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446CrossRefPubMedGoogle Scholar
  9. el Jundi B, Pfeiffer K, Homberg U (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS ONE 6:e27855CrossRefPubMedPubMedCentralGoogle Scholar
  10. Elphick MR, Williams L, O’Shea M (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J Exp Biol 199:2395–2407PubMedGoogle Scholar
  11. Enserink M (2004) Entomology. Can the war on locusts be won? Science 306:1880–1882CrossRefPubMedGoogle Scholar
  12. Gewecke M, Hou T (1992) Structure and function of visual interneurons in the locust brain. In: Singh RN (ed) Nervous systems, principles of design and function. Wiley, New Delhi, pp 255–270Google Scholar
  13. Gewecke M, Hou T (1993) Visual brain neurons in Locusta migratoria. In: Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 119–144Google Scholar
  14. Griss C, Rowell CHF (1986) Three descending interneurons reporting deviation from course in the locust. 1. Anatomy. J Comp Physiol A 158:765–774CrossRefPubMedGoogle Scholar
  15. Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997CrossRefPubMedGoogle Scholar
  16. Heinze S, Gotthardt S, Homberg U (2009) Transformation of polarized light information in the central complex of the locust. J Neurosci 29:11783–11793CrossRefPubMedGoogle Scholar
  17. Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594CrossRefPubMedGoogle Scholar
  18. Hensler K (1989) Corrective flight steering in locusts: convergence of extero- and proprioceptive inputs in descending deviation detectors. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, London, pp 531–554CrossRefGoogle Scholar
  19. Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163. doi:10.1186/1471-2148-12-163 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208CrossRefPubMedGoogle Scholar
  21. Homberg U (2015) Sky compass orientation in desert locusts—evidence from field and laboratory studies. Front Behav Neurosci 9:346CrossRefPubMedPubMedCentralGoogle Scholar
  22. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280CrossRefPubMedGoogle Scholar
  23. Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430CrossRefPubMedGoogle Scholar
  24. Horváth G (1995) Reflection polarization patterns at flat water surfaces and their relevance for insect polarization vision. J Theor Biol 175:27–37CrossRefPubMedGoogle Scholar
  25. Horváth G, Majer J, Horváth L, Szivak I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100CrossRefPubMedGoogle Scholar
  26. Hu XB, England JH, Lani AC, Tung JJ, Ward NJ, Adams SM, Barber KA, Whaley MA, O’Tousa JE (2009) Patterned rhodopsin expression in R7 photoreceptors of mosquito retina: implications for species-specific behavior. J Comp Neurol 516:334–342CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kelber A (1999) Why’ false’ colours are seen by butterflies. Nature 402:251CrossRefPubMedGoogle Scholar
  28. Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480PubMedGoogle Scholar
  29. Kelly KM, Mote MI (1990a) Avoidance of monochromatic light by the cockroach Periplaneta americana. J Insect Physiol 36:287–291CrossRefGoogle Scholar
  30. Kelly KM, Mote MI (1990b) Electrophysiology and anatomy of medulla interneurons in the optic lobe of the cockroach, Periplaneta americana. J Comp Physiol A 167:745–756CrossRefPubMedGoogle Scholar
  31. Kennedy JS (1945) Observations on the mass migration of desert locust hoppers. Trans Roy Ent Soc London 95:247–262CrossRefGoogle Scholar
  32. Kennedy JS (1951) The migration of the desert locust (Schistocerca gregaria Forsk.). I. The behaviour of swarms. II. A theory of long-range migrations. Philos Trans R Soc Lond B Biol Sci 235:163–290CrossRefPubMedGoogle Scholar
  33. Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an optoelectronic model neurone. J Exp Biol 202:757–770PubMedGoogle Scholar
  34. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379CrossRefPubMedGoogle Scholar
  35. Latchininsky AV (2010) Locusts. In: Breed AD, Moore J (eds) Encyclopedia of animal behavior, vol 2. Academic Press, Oxford, pp 288–295CrossRefGoogle Scholar
  36. Laughlin SB (1976) Sensitivities of dragonfly photoreceptors and voltage gain of transduction. J Comp Physiol 111:221–247CrossRefGoogle Scholar
  37. Laughlin S, McGinness S (1978) Structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res 188:427–447CrossRefPubMedGoogle Scholar
  38. Leggett LMW (1976) Polarized light-sensitive interneurones in a swimming crab. Nature 262:709–711CrossRefPubMedGoogle Scholar
  39. Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702CrossRefPubMedGoogle Scholar
  40. Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68CrossRefGoogle Scholar
  41. Nelson SB (1991) Temporal interactions in the cat visual system. 1. Orientation-selective suppression in the visual cortex. J Neurosci 11:344–356PubMedGoogle Scholar
  42. Osorio D (1986a) Directionally selective cells in the locust medulla. J Comp Physiol A 159:841–847CrossRefPubMedGoogle Scholar
  43. Osorio D (1986b) Ultraviolet sensitivity and spectral opponency in the locust. J Exp Biol 122:193–208Google Scholar
  44. Pfeiffer K, Kinoshita M, Homberg U (2005) Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neurophysiol 94:3903–3915CrossRefPubMedGoogle Scholar
  45. Reichert H (1993) Sensory inputs and flight orientation in locusts. Comp Biochem Physiol A 104:647–657CrossRefGoogle Scholar
  46. Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886CrossRefPubMedGoogle Scholar
  47. Rind FC (1987) Non-directional, movement sensitive neurones of the locust optic lobe. J Comp Physiol A 161:477–494CrossRefGoogle Scholar
  48. Rind FC (1990) A directionally selective motion-detecting neurone in the brain of the locust: physiological and morphological characterization. J Exp Biol 149:1–19Google Scholar
  49. Rossel S, Wehner R, Lindauer M (1978) E-vector orientation in bees. J Comp Physiol 125:1–12CrossRefGoogle Scholar
  50. Rowell CHF (1988) Mechanisms of flight steering in locusts. Experientia 44:389–395CrossRefGoogle Scholar
  51. Schmeling F, Wakakuwa M, Tegtmeier J, Kinoshita M, Bockhorst T, Arikawa K, Homberg U (2014) Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria. J Exp Biol 217:3557–3568CrossRefPubMedGoogle Scholar
  52. Schmeling F, Tegtmeier J, Kinoshita M, Homberg U (2015) Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye. J Comp Physiol A 201:427–440CrossRefGoogle Scholar
  53. Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559CrossRefPubMedGoogle Scholar
  54. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540CrossRefGoogle Scholar
  55. Schwind R, Horváth G (1993) Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaften 80:82–83CrossRefGoogle Scholar
  56. Sharp PE, Blair HT, Cho JW (2001) The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci 24:289–294CrossRefPubMedGoogle Scholar
  57. Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 1:472–475CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stern M, Gewecke M (1993) Spatial sensitivity profiles of motion sensitive neurons in the locust brain. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 184–195Google Scholar
  59. Strausfeld NJ (1976) Atlas of an insect brain. Springer, BerlinCrossRefGoogle Scholar
  60. Strutt JW (1871) On the light from the sky, its polarization and colour. Philos Mag 41:107–120Google Scholar
  61. Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207CrossRefPubMedGoogle Scholar
  62. Träger U, Homberg U (2011) Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J Neurosci 31:2238–2247CrossRefPubMedGoogle Scholar
  63. Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125PubMedGoogle Scholar
  64. Wehner R (2001) Polarization vision - a uniform sensory capacity? J Exp Biol 204:2589–2596PubMedGoogle Scholar
  65. Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMedGoogle Scholar
  66. Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20CrossRefPubMedGoogle Scholar
  67. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302CrossRefGoogle Scholar
  68. Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für Zellbiologie und NeurowissenschaftGoethe-UniversitätFrankfurt/MGermany
  2. 2.Faculty of Biology, Animal PhysiologyPhilipps-Universität MarburgMarburgGermany

Personalised recommendations