Advertisement

Journal of Comparative Physiology A

, Volume 202, Issue 9–10, pp 709–722 | Cite as

Nectar profitability, not empty honey stores, stimulate recruitment and foraging in Melipona scutellaris (Apidae, Meliponini)

  • Dirk Louis P. SchorkopfEmail author
  • Geovan Figueirêdo de Sá Filho
  • Camila Maia-Silva
  • Martina Schorkopf
  • Michael Hrncir
  • Friedrich G. Barth
Original Paper

Abstract

In stingless bees (Meliponini) like in many other eusocial insect colonies food hoarding plays an important role in colony survival. However, very little is known on how Meliponini, a taxon restricted to tropical and subtropical regions, respond to different store conditions. We studied the impact of honey removal on nectar foraging activity and recruitment behaviour in Melipona scutellaris and compared our results with studies of the honey bee Apis mellifera. As expected, foraging activity increased significantly during abundance of artificial nectar and when increasing its profitability. Foraging activity on colony level could thereby frequently increase by an order of magnitude. Intriguingly, however, poor honey store conditions did not induce increased nectar foraging or recruitment activity. We discuss possible reasons explaining why increasing recruitment and foraging activity are not used by meliponines to compensate for poor food conditions in the nest. Among these are meliponine specific adaptations to climatic and environmental conditions, as well as physiology and brood rearing, such as mass provisioning of the brood.

Keywords

Nectar foraging Tropics Food hoarding Food deprivation Observation hive 

Notes

Acknowledgments

This study was supported by Grants of the Austrian “Bundesministerium für Wissenschaft und Kunst” and “Internationales Büro” (University of Vienna) to DLPS, the Brazilian Science Foundation CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) under Grant 55/2013—Pró-Integração-AUXPE 3168/2013 to MH, the Brazilian Science Foundation CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) to CMS, and by Grant P14328 of the Austrian Science Foundation (FWF) to FGB. We are grateful to Prof. Z.L.P. Simões and the Departamento de Genetica (FMRP, USP) for their generous hospitality and Dr. Weyder Santana for helping handling the hives in Ribeirão Preto. We thank Prof. L. Bego for providing logistic support and M.A. Batista, Dr. S. Jarau, Dr. Sidnei Mateus, Prof. Ronaldo Zucchi, the late Prof. J.M.F. Camargo, and Prof. P.N. Neto for helpful discussions and encouragement after the first set of unexpected foraging results following honey store removal in both Melipona seminigra and M. scutellaris. We are particularly grateful to Dr. Hans Nemeschkal and Prof. Fred Bookstein for their very valuable help with permutation statistics. We greatly appreciate Prof. Tom D. Seeley’s suggestions that improved an earlier version of the manuscript focusing on aspects of recruitment behaviour. We also thank the anonymous reviewers for suggestions, which further improved our paper. Finally, we gratefully thank Rodrigo O.C. Carvalho and Dr. Airton T. Carvalho and their family for allowing us to conduct the multiple colony foraging experiments at Camaragibe, as well as for their assistance when preparing for the experiments.

Supplementary material

359_2016_1102_MOESM1_ESM.pdf (227 kb)
Supplementary material 1 (PDF 226 kb)

References

  1. Alves RM, Carvalho CA, Souza BA, Santos WS (2012) Areas of natural occurrence of Melipona scutellaris Latreille, 1811 (Hymenoptera: apidae) in the State of Bahia, Brazil. An Acad Bras Cienc 84:679–688CrossRefPubMedGoogle Scholar
  2. Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327CrossRefGoogle Scholar
  3. Batista MA, Ramalho M, Soares AE (2003) Nesting sites and abundance of Meliponini (Hymenoptera: apidae) in heterogeneous habitats of the Atlantic rain forest, Bahia, Brazil. Lundiana 4:19–23Google Scholar
  4. Camargo JMF (2013) Historical biogeography of the Meliponini (Hymenoptera, Apidae, Apinae) of the Neotropical Region. In: Vit P, Pedro SRM, Roubik D (eds) Pot-honey: a legacy of stingless bees. Springer, New York, pp 3–17Google Scholar
  5. Cartar RV (1992) Adjustment of foraging effort and task switching in energy-manipulated wild bumblebee colonies. Anim Behav 44:75–87CrossRefGoogle Scholar
  6. Crailsheim K (1990) The protein balance of the honey bee worker. Apidologie 21:417–429CrossRefGoogle Scholar
  7. Crailsheim K, Schneider LHW, Hrassnigg N, Bühlmann G, Brosch U, Gmeinbauer R, Schöffmann B (1992) Pollen consumption and utilisation in worker honey bees: dependence on individual age and function. J Insect Physiol 38:409–419CrossRefGoogle Scholar
  8. Crailsheim K, Hrassnigg N, Gmeinbauer R, Szolderits M, Schneider LHW, Brosch U (1993) A comparison of pollen consumption and digestion in non-breeding honeybees in winter. J Insect Physiol 39:369–373CrossRefGoogle Scholar
  9. Dornhaus A (2002) The role of communication in the foraging process of social bees. Doctoral dissertation, University of Würzburg, Würzburg, GermanyGoogle Scholar
  10. Edgington S (1995) Randomization tests, 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  11. Free JB, Williams I (1972) Hoarding by honeybees (Apis mellifera L.). Anim Behav 20:327–334CrossRefGoogle Scholar
  12. Gordon DM (1996) The organization of work in social insect colonies. Nature 380:121–124CrossRefGoogle Scholar
  13. Hrassnigg N, Brodschneider R, Fleischmann P, Crailsheim K (2003) Honeybee drones are not able to utilize starch as fuel for flight but worker bees (Apis mellifera L.) are able to. In: 38th Apimondia Congress, Ljubljana, SloveniaGoogle Scholar
  14. Hrncir M (2009) Mobilizing the foraging force - mechanical signals in stingless bee recruitment. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 199–221CrossRefGoogle Scholar
  15. Hrncir M, Barth FG (2014) Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 349–374Google Scholar
  16. Hrncir M, Jarau S, Zucchi R, Barth FG (2004a) On the origin and properties of scent marks deposited at the food source by a stingless bee, Melipona seminigra. Apidologie 35:3–13CrossRefGoogle Scholar
  17. Hrncir M, Jarau S, Zucchi R, Barth FG (2004b) Thorax vibrations of a stingless bee (Melipona seminigra) II. Dependence on sugar concentration. J Comp Physiol A 190:549–560Google Scholar
  18. Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Boca Raton, pp 223–249CrossRefGoogle Scholar
  19. Jarau S, Hrncir M, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and Melipona quadrifasciata I. Foraging at food sources differing in direction and distance. Apidologie 31:81–91CrossRefGoogle Scholar
  20. Jarau S, Hrncir M, Schmidt VM, Zucchi R, Barth FG (2003) Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insect Soc 50:365–374CrossRefGoogle Scholar
  21. Jones JC, Oldroyd BP (2007) Nest thermoregulation in social insects. Adv Insect Physiol 33:153–191CrossRefGoogle Scholar
  22. Kerr WE, Carvalho GA, Nascimento VA (1996) Abelha uruçu: biologia, manejo e conservação. Fundação Acangaú, ParacatuGoogle Scholar
  23. Kugler H (1943) Hummeln als Blütenbesucher. Erg biol 19:143–323Google Scholar
  24. Lichtenberg EM, Zivin JG, Hrncir M, Nieh JC (2014) Eavesdropping selects for conspicuous signals. Curr Biol 24:R598–R599CrossRefPubMedGoogle Scholar
  25. Lindauer M (1948) Über die Einwirkung von Duft und Geschmackstoffen sowie anderer Faktoren auf die Tänze der Bienen. Z vergl Physiol 31:348–412CrossRefGoogle Scholar
  26. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z vergl Physiol 34:299–345CrossRefGoogle Scholar
  27. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z vergl Physiol 36:391–432CrossRefGoogle Scholar
  28. Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z vergl Physiol 38:521–557CrossRefGoogle Scholar
  29. Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z vergl Physiol 41:405–434CrossRefGoogle Scholar
  30. Maia-Silva C, Hrncir M, Silva CI, Imperatriz-Fonseca VL (2015) Survival strategies of stingless bees (Melipona subnitida) in an unpredictable environment, the Brazilian tropical dry forest. Apidologie 46:631–643CrossRefGoogle Scholar
  31. Maia-Silva C, Hrncir M, Imperatriz-Fonseca VL, Schorkopf DLP (2016) Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores. J Comp Physiol A. doi: 10.1007/s00359-016-1095-y Google Scholar
  32. Manly BJF (1997) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, LondonGoogle Scholar
  33. Martinho MR (1975a) Contribuição ao estudo da digestão do grão de pólen em Melipona quadrifasciata anthidioides Lepeltier (Hymenoptera, Apidae, Meliponinae). Masters study. University of São Paulo, Ribeirão Preto, São PauloGoogle Scholar
  34. Martinho MR (1975b) Contribution to the study of the digestion of pollen grains in the Melipona cuadrifasciata anthidioides Lepeltier (Hymenoptera, Apidae, Meliponinae). The bee and the environment (The XXVth International Apicultural Congress of Apimondia in Grenoble, France). Apimondia Publishing House, Bucharest, pp 159–160 (cuadrifasciata standing for quadrifasciata) Google Scholar
  35. Mc Cabe SI, Ferro MWB, Farina WM, Hrncir M (2016) Dose-and time-dependent effects of oral octopamine treatments on the sucrose responsiveness in stingless bees (Melipona scutellaris). Apidologie. doi: 10.1007/s13592-016-0442-x:1-7 Google Scholar
  36. Michener CD (2000) The bees of the world. The Johns Hopkins University Press, Baltimore MarylandGoogle Scholar
  37. Moure JS (1975) Notas sobre as espécies de Melipona descritas por Lepeletier em 1836 (Hymenoptera, Apidae). Rev Bras Biol 35:615–623Google Scholar
  38. Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182CrossRefGoogle Scholar
  39. Nieh JC, Roubik DW (1995) A stingless bee (Melipona panamica) indicates food location without using a scent trail. Behav Ecol Sociobiol 37:36–70CrossRefGoogle Scholar
  40. Nogueira-Neto P (1970) A criação de abelhas indígenas sem ferrão, 2nd edn. Chácaras e Quintais, São PauloGoogle Scholar
  41. Nogueira-Neto P (1997) Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis, São PauloGoogle Scholar
  42. Noll FB (2002) Behavioral phylogeny of corbiculate Apidae (Hymenoptera; Apinae), with special reference to social behavior. Cladistics 18:137–153CrossRefGoogle Scholar
  43. Peres-Neto PR, Olden JD (2001) Assessing the robustness of randomization tests: examples from behavioural studies. Anim Behav 61:79–86CrossRefPubMedGoogle Scholar
  44. Pick R, Blochtein B (2002) Atividades de vôo de Plebeia saiqui (Holmberg) (Hymenoptera, Apidae, Meliponini) durante o período de postura da rainha e em diapausa. Rev Bras Zool 19:827–839CrossRefGoogle Scholar
  45. Pierrot LM, Schlindwein C (2003) Variation in daily flight activity and foraging patterns in colonies of uruçu—Melipona scutellaris Latreille (Apidae, Meliponini). Rev Bras Zool 20:565–571CrossRefGoogle Scholar
  46. R Development Core Team (2003) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  47. Ribeiro MF, Imperatriz-Fonseca VL, Filho PSS (2003) A interrupção da construção de células de cria e postura em Plebeia remota (Holmberg) (Hymenoptera, Apidae, Meliponini). In: Melo GAR, Santos IA (eds) Apoidea neotropica. Editora UNESC, Circiúma, pp 177–188Google Scholar
  48. Rinderer TE (1981) Volatiles from empty comb increase hoarding by honeybee. Anim Behav 29:1275–1276CrossRefGoogle Scholar
  49. Rinderer TE (1982) Regulated nectar harvesting by the honeybee. J Apic Res 21:74–87CrossRefGoogle Scholar
  50. Rinderer TE (1983) Regulation of honey bee hoarding efficiency. Apidologie 14:87–92CrossRefGoogle Scholar
  51. Rinderer TE, Baxter JR (1978) Effect of empty comb on hoarding behavior and honey production of the honey bee. J Econ Entomol 71:757–759CrossRefGoogle Scholar
  52. Rinderer TE, Baxter JR (1979) Honey bee hoarding behaviour: effects of previous stimulation by empty comb. Anim Behav 27:426–428CrossRefGoogle Scholar
  53. Roubik DW (1982) Seasonality in colony food storage, brood production and adult survivorship: studies of Melipona in tropical forest (Hymenoptera: apidae). J Kansas Entomol Soc 55:789–800Google Scholar
  54. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New YorkCrossRefGoogle Scholar
  55. Roubik DW, Peralta FJA (1983) Thermodynamics in nests of two Melipona species in Brazil. Acta Amazônica 13:453–466Google Scholar
  56. Sakagami SF (1982) Stingless bees. In: Hermann HR (ed) Social insects, vol 3. Academic Press, New York, pp 361–423Google Scholar
  57. Schmidt VM, Schorkopf DLP, Hrncir M, Zucchi R, Barth FG (2006) Collective foraging in a stingless bee: dependence on food profitability and sequence of discovery. Anim Behav 72:1309–1317CrossRefGoogle Scholar
  58. Schmidt VM, Hmcir M, Schorkopf DLP, Mateus S, Zucchi R, Barth FG (2008) Food profitability affects intranidal recruitment behaviour in the stingless bee Nannotrigona testaceicornis. Apidologie 39:260–272CrossRefGoogle Scholar
  59. Schorkopf DLP, Zucchi R, Barth FG (2004) Memory for feeding time. In: Proceedings of the 8th International Conference on Tropical Bees and VI Encontro sobre Abelhas. Ribeirão Preto, São Paulo. Brazil, p 643Google Scholar
  60. Schorkopf DLP, Jarau S, Francke W, Twele R, Zucchi R, Hmcir M, Schmidt VM, Ayasse M, Barth FG (2007) Spitting out information: trigona bees deposit saliva to signal resource locations. Proc R Soc B 274:895–898CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schwarz HF (1948) Stingless bees (Meliponidae) of the western hemisphere. Bull Am Mus Nat Hist 90:1–546Google Scholar
  62. Seeley TD (1985) Honeybee ecology: a study of adaptation in social life. Princeton University Press, USCrossRefGoogle Scholar
  63. Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behav Ecol Sociobiol 24:181–199CrossRefGoogle Scholar
  64. Seeley TD (1995) The wisdom of the hive: The social physiology of honey bee colonies. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  65. Sokal RR, Rohlf J (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  66. van Veen JW, Arce HG, Sommeijer MJ (2004) Production of queens and drones in Melipona beecheii (Meliponini) in relation to colony development and resource availability. Proc Neth Entomol Soc 15:35–39Google Scholar
  67. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, NewYorkCrossRefGoogle Scholar
  68. von Jacobs-Jessen UF (1959) Zur Orientierung der Hummeln und einiger anderer Hymenopteren. Z vergl Physiol 41:597–641CrossRefGoogle Scholar
  69. Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  70. Zanella F (2000) The bees of the Caatinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution. Apidologie 31:579–592CrossRefGoogle Scholar
  71. Zucchi R (1993) Ritualized dominance, evolution of queen-worker interactions and related aspects in stingless bees (Hymenoptera: Apidae). In: Inoue T, Yamane S (eds) Evolution of insect societies: comparative sociology of bees, wasps and ants. Hakuhinsha, Tokyo, pp 207–249Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dirk Louis P. Schorkopf
    • 1
    Email author
  • Geovan Figueirêdo de Sá Filho
    • 2
  • Camila Maia-Silva
    • 2
  • Martina Schorkopf
    • 3
  • Michael Hrncir
    • 2
  • Friedrich G. Barth
    • 4
  1. 1.Unit of Chemical Ecology, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
  2. 2.Departamento de Ciências AnimaisUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  3. 3.Department of Neuropsychiatry and Psychosomatic MedicineOslo Universitetssykehus HF RikshospitaletOsloNorway
  4. 4.Department for Neurobiology, Faculty of Life SciencesUniversity of ViennaViennaAustria

Personalised recommendations