Journal of Comparative Physiology A

, Volume 202, Issue 7, pp 527–534 | Cite as

Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia reticulata)

  • Benjamin A. SandkamEmail author
  • Kerry A. Deere-Machemer
  • Ashley M. Johnson
  • Gregory F. Grether
  • F. Helen Rodd
  • Rebecca C. Fuller
Original Paper


Differences in color vision can play a key role in an organism’s ability to perceive and interact with the environment across a broad range of taxa. Recently, species have been shown to vary in color vision across populations as a result of differences in regulatory sequence and/or plasticity of opsin gene expression. For decades, biologists have been intrigued by among-population variation in color-based mate preferences of female Trinidadian guppies. We proposed that some of this variation results from variation in color vision caused by plasticity in opsin expression. Specifically, we asked about the role of dietary carotenoid availability, because carotenoids (1) are the precursors for vitamin A, which is essential for the creation of photopigments and (2) have been linked to variation in female mate choice. We raised guppies on different carotenoid-level diets and measured opsin expression. Guppies raised on high-carotenoid diets expressed higher levels of long wavelength sensitive opsin (LWS) opsins than those raised on lower levels of carotenoids. These results suggest that dietary effects on opsin expression represent a previously unaccounted for mechanism by which ecological differences across populations could lead to mate choice differences.


Opsins LWS Mate choice Population divergence Visual ecology 



Short wavelength sensitive 1 opsin


Short wavelength sensitive 2 opsin




Rhodopsin-like opsin


Long wavelength sensitive opsin



Robert Machemer, Chris Anderson, Neil Losin, Adrea Gonzalez-Karlsson, Kathryn Peiman, and Cameron Weadick provided useful comments on the manuscript. Kim Hughes ran some of the early statistical analyses. Rob Olendorf ran the qRT-PCR reactions. We thank Roche Vitamins for donating carotenoids, Ocean Star International (OSI) for producing and donating the experimental diets, and Mark Lamon at OSI for assistance and advice. This investigation was supported by National Human Genome Research Institute (NIH) (T32-HG02536), R.L. Kirschstein National Research Service Award (T32-GM008185), the National Science Foundation (IOB 0445127, IBN-013089), and the University of Illinois.

Compliance with ethical standards

Ethical approval

All procedures performed involving animals were approved and in accordance with the ethical standards of the University of California, Los Angeles Animal Research Committee (protocol #1999-197-23).

Supplementary material

359_2016_1097_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (DOCX 69 kb)


  1. Bennett RR, White RH (1989) Influence of carotenoid deficiency on visual sensitivity, visual pigment and P-face particles of photoreceptor membrane in the moth Manduca sexta. J Comp Physiol A 164:321–331. doi: 10.1007/BF00612992 CrossRefGoogle Scholar
  2. Bennett RR, White RH (1991) 11-cis retinal restores visual function in vitamin A-deficient Manduca. Vis Neurosci 6:473–479. doi: 10.1017/S0952523800001322 CrossRefPubMedGoogle Scholar
  3. Billsten HH, Bhosale P, Yemelyanov A et al (2003) Photophysical properties of xanthophylls in carotenoproteins from human retinas. Photochem Photobiol 78:138–145CrossRefPubMedGoogle Scholar
  4. Carleton KL, Parry JWL, Bowmaker JK et al (2005) Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol Ecol 14:4341–4353. doi: 10.1111/j.1365-294X.2005.02735.x CrossRefPubMedGoogle Scholar
  5. Carleton KL, Spady TC, Streelman JT et al (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6:22CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carleton KL, Dalton BE, Camacho DE, Nandamuri SP (2016) Proximate and ultimate causes of variable visual sensitivities: insights from cichlid fish radiations. Genesis. doi: 10.1002/dvg.22940 PubMedGoogle Scholar
  7. Cheng CL, Flamarique IN (2004) Opsin expression: new mechanism for modulating colour vision. Nature 428:279. doi: 10.1038/428279a
  8. Dalton BE, Lu J, Leips J et al (2015) Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra. Mol Ecol 24:4193–4204. doi: 10.1111/mec.13312 CrossRefPubMedGoogle Scholar
  9. Ehlman SM, Sandkam BA, Breden F, Sih A (2015) Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. J Comp Physiol A 201:1125–1135. doi: 10.1007/s00359-015-1041-4
  10. Endler JA, Houde AE (1995) Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution 49:456–468CrossRefGoogle Scholar
  11. Flamarique IN, Cheng CL, Bergstrom C, Reimchen TE (2013) Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. J Exp Biol 216:656–667. doi: 10.1242/jeb.078840 CrossRefPubMedGoogle Scholar
  12. Fujieda H, Bremner R, Mears AJ, Sasaki H (2009) Retinoic acid receptor-related orphan receptor α regulates a subset of cone genes during mouse retinal development. J Neurochem 108:91–101CrossRefPubMedGoogle Scholar
  13. Fuller RC, Claricoates KM (2011) Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Mol Ecol 20:3321–3335. doi: 10.1111/j.1365-294X.2011.05180.x CrossRefPubMedGoogle Scholar
  14. Fuller RC, Fleishman LJ, Leal M et al (2003) Intraspecific variation in retinal cone distribution in the bluefin killifish, Lucania goodei. J Comp Physiol A 189:609–616. doi: 10.1007/s00359-003-0435-x CrossRefGoogle Scholar
  15. Fuller RC, Carleton KL, Fadool JM et al (2004) Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A 190:147–154. doi: 10.1007/s00359-003-0478-z CrossRefGoogle Scholar
  16. Fuller RC, Carleton KL, Fadool JM et al (2005) Genetic and environmental variation in the visual properties of bluefin killifish, Lucania goodei. J Evol Biol 18:516–523. doi: 10.1111/j.1420-9101.2005.00886.x CrossRefPubMedGoogle Scholar
  17. Goyret J, Kelber A, Pfaff M, Raguso RA (2009) Flexible responses to visual and olfactory stimuli by foraging Manduca sexta: larval nutrition affects adult behaviour. Proc R Soc B 276:2739–2745. doi: 10.1098/rspb.2009.0456 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Grether GF (2000) Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata). Evolution 54:1712–1724. doi: 10.1111/j.0014-3820.2000.tb00715.x CrossRefPubMedGoogle Scholar
  19. Grether GF, Hudon J, Millie DF (1999) Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proc R Soc B 266:1317–1322. doi: 10.1098/rspb.1999.0781 CrossRefPubMedCentralGoogle Scholar
  20. Grether GF, Hudon J, Endler JA (2001) Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proc R Soc B 268:1245–1253. doi: 10.1098/rspb.2001.1624 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grether GF, Kolluru GR, Rodd FH et al (2005) Carotenoid availability affects the development of a colour-based mate preference and the sensory bias to which it is genetically linked. Proc R Soc B 272:2181–2188. doi: 10.1098/rspb.2005.3197 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hagstrom SA, Neitz M, Neitz J (2000) Cone pigment gene expression in individual photoreceptors and the chromatic topography of the retina. J Opt Soc Am A 17:527–537. doi: 10.1364/JOSAA.17.000527 CrossRefGoogle Scholar
  23. Hofmann CM, Carleton KL (2009) Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol 49:630–643. doi: 10.1093/icb/icp079 CrossRefPubMedGoogle Scholar
  24. Houde AE (1997) Sex, color, and mate choice in guppies. Princeton University Press, PrincetonGoogle Scholar
  25. Johnson AM, Stanis S, Fuller RC (2013) Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish. Proc Biol Sci 280:20130796. doi: 10.1098/rspb.2013.0796 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Knott B, Berg ML, Morgan ER et al (2010) Avian retinal oil droplets: dietary manipulation of colour vision? Proc R Soc B 277:953–962. doi: 10.1098/rspb.2009.1805 CrossRefPubMedGoogle Scholar
  27. Kolluru GR, Grether GF, South SH et al (2006) The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biol J Linn Soc 89:301–309. doi: 10.1111/j.1095-8312.2006.00675.x CrossRefGoogle Scholar
  28. Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40. doi: 10.1006/abbi.2000.2171 CrossRefPubMedGoogle Scholar
  29. Larmuseau MHD, Raeymaekers JAM, Ruddick KG et al (2009) To see in different seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus). Mol Ecol 18:4227–4239. doi: 10.1111/j.1365-294X.2009.04331.x CrossRefPubMedGoogle Scholar
  30. Laver CRJ, Taylor JS (2011) RT-qPCR reveals opsin gene up regulation associated with age and sex in guppies (Poecilia reticulata)-a species with color-based sexual selection and 11 visual-opsin genes. BMC Evol Biol 11:81. doi: 10.1186/1471-2148-11-81 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lehtonen PK, Laaksonen T, Artemyev AV et al (2011) Candidate genes for colour and vision exhibit signals of selection across the pied flycatcher (Ficedula hypoleuca) breeding range. Heredity 108:431–440. doi: 10.1038/hdy.2011.93 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Maier EJ, Bowmaker JK (1993) Colour vision in the passeriform bird, Leiothrix lutea: correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. J Comp Physiol A 172:295–301. doi: 10.1007/BF00216611 CrossRefGoogle Scholar
  33. Mitchell DM, Stevens CB, Frey RA et al (2015) Retinoic acid signaling regulates differential expression of the tandemly-duplicated long wavelength-sensitive cone opsin genes in Zebrafish. PLoS Genet 11:e1005483. doi: 10.1371/journal.pgen.1005483 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Napoli JL, Race KR (1988) Biogenesis of retinoic acid from beta-carotene. Differences between the metabolism of beta-carotene and retinal. J Biol Chem 263:17372–17377PubMedGoogle Scholar
  35. Nelson JS (2006) Fishes of the world. Wiley, New YorkGoogle Scholar
  36. O’Quin KE, Schulte JE, Patel Z et al (2012) Evolution of cichlid vision via trans-regulatory divergence. BMC Evol Biol 12:251. doi: 10.1186/1471-2148-12-251 CrossRefPubMedPubMedCentralGoogle Scholar
  37. R Development Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
  38. Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41:1200–1209PubMedGoogle Scholar
  39. Reznick DN, Butler M, Rodd FH (2001) Life-history evolution in guppies. VII. The comparative ecology of high- and low-predation environments. Am Nat 157:126–140CrossRefPubMedGoogle Scholar
  40. Sakai Y, Ohtsuki H, Kasagi S, Kawamura S, Kawata M (2016) Effects of light environment during growth on the expression of cone opsin genes and behavioral spectral sensitivities in guppies (Poecilia reticulata). BMC Evol Biol 16:106. doi: 10.1186/s12862-016-0679-z CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sandkam BA, Joy JB, Watson CT et al (2012) Hybridization leads to sensory repertoire expansion in a gynogenetic fish, the Amazon Molly (Poecilia formosa): a test of the hybrid-sensory expansion hypothesis. Evolution 67:120–130. doi: 10.1111/j.1558-5646.2012.01779.x CrossRefPubMedGoogle Scholar
  42. Sandkam BA, Young CM, Breden F (2015a) Beauty in the eyes of the beholders: colour vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata). Mol Ecol 24:596–609. doi: 10.1111/mec.13058 CrossRefPubMedGoogle Scholar
  43. Sandkam BA, Young CM, Breden FMW et al (2015b) Color vision varies more among populations than among species of live-bearing fish from South America. BMC Evol Biol 15:225. doi: 10.1186/s12862-015-0501-3 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scott GR, Schulte PM (2005) Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. Comp Biochem Physiol A 141:176–182. doi: 10.1016/j.cbpb.2005.05.002 CrossRefGoogle Scholar
  45. Scott GR, Claiborne JB, Edwards SL et al (2005) Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J Exp Biol 208:2719–2729. doi: 10.1242/jeb.01688 CrossRefPubMedGoogle Scholar
  46. Scott GR, Schulte PM, Wood CM (2006) Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. J Exp Biol 209:4040–4050. doi: 10.1242/jeb.02462 CrossRefPubMedGoogle Scholar
  47. Shand J, Davies WL, Thomas N et al (2008) The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J Exp Biol 211:1495–1503CrossRefPubMedGoogle Scholar
  48. Sharpe LT, Gegenfurtner KR (1999) Color vision. Cambridge University Press, CambridgeGoogle Scholar
  49. Shim KF, Tan CH (1990) The dietary requirement of vitamin A in guppy (Poecilia reticulata Peters). In: Watanabe T (ed) Takeda M. Toba, Japan, pp 133–140Google Scholar
  50. Smith AR, D’Annunzio L, Smith AE et al (2011) Intraspecific cone opsin expression variation in the cichlids of Lake Malawi. Mol Ecol 20:299–310. doi: 10.1111/j.1365-294X.2010.04935.x CrossRefPubMedGoogle Scholar
  51. Sommerburg OG, Siems WG, Hurst JS et al (1999) Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res 19:491–495. doi: 10.1076/ceyr.19.6.491.5276 CrossRefPubMedGoogle Scholar
  52. Tam KJ, Watson CT, Massah S et al (2011) Regulatory function of conserved sequences upstream of the long-wave sensitive opsin genes in teleost fishes. Vis Res 51:2295–2303. doi: 10.1016/j.visres.2011.09.010 CrossRefPubMedGoogle Scholar
  53. Tezuka A, Kasagi S, Van Oosterhout C et al (2014) Divergent selection for opsin gene variation in guppy (Poecilia reticulata) populations of Trinidad and Tobago. Heredity 113:381–389. doi: 10.1038/hdy.2014.35 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Thomson LR, Toyoda Y, Delori FC et al (2002) Long term dietary supplementation with zeaxanthin reduces photoreceptor death in light-damaged Japanese quail. Exp Eye Res 75:529–542CrossRefPubMedGoogle Scholar
  55. Ward MN, Churcher AM, Dick KJ et al (2008) The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol. doi: 10.1186/1471-2148-8-210 PubMedPubMedCentralGoogle Scholar
  56. Watson CT, Lubieniecki KP, Loew ER et al (2010) Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri. BMC Evol Biol 10:87. doi: 10.1186/1471-2148-10-87 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Watson CT, Gray SM, Hoffmann M et al (2011) Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata. J Mol Evol 72:240–252. doi: 10.1007/s00239-010-9426-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Benjamin A. Sandkam
    • 1
    Email author
  • Kerry A. Deere-Machemer
    • 2
  • Ashley M. Johnson
    • 3
  • Gregory F. Grether
    • 2
  • F. Helen Rodd
    • 4
  • Rebecca C. Fuller
    • 3
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesUSA
  3. 3.School of Integrative BiologyUniversity of IllinoisChampaignUSA
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada

Personalised recommendations