Journal of Comparative Physiology A

, Volume 202, Issue 7, pp 459–472 | Cite as

Steering intermediate courses: desert ants combine information from various navigational routines

  • Rüdiger Wehner
  • Thierry Hoinville
  • Holk Cruse
  • Ken Cheng
Review

Abstract

A number of systems of navigation have been studied in some detail in insects. These include path integration, a system that keeps track of the straight-line distance and direction travelled on the current trip, the use of panoramic landmarks and scenery for orientation, and systematic searching. A traditional view is that only one navigational system is in operation at any one time, with different systems running in sequence depending on the context and conditions. We review selected data suggesting that often, different navigational cues (e.g., compass cues) and different systems of navigation are in operation simultaneously in desert ant navigation. The evidence suggests that all systems operate in parallel forming a heterarchical network. External and internal conditions determine the weights to be accorded to each cue and system. We also show that a model of independent modules feeding into a central summating device, the Navinet model, can in principle account for such data. No central executive processor is necessary aside from a weighted summation of the different cues and systems. Such a heterarchy of parallel systems all in operation represents a new view of insect navigation that has already been expressed informally by some authors.

Keywords

Desert ant navigation Navinet model Path integration Sky compass Terrestrial panorama 

Notes

Acknowledgments

Funding for RW to visit Macquarie University to draft this manuscript with KC was provided by the Australian Research Council (DP110100608 to KC and RW) and by Macquarie University. The research reviewed here complies with the ethical standards of each of the countries in which it was performed. The authors declare no conflict of interest.

References

  1. Åkesson S, Wehner R (2002) Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? J Exp Biol 205:1971–1978PubMedGoogle Scholar
  2. Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262CrossRefPubMedGoogle Scholar
  3. Andel D, Wehner R (2004) Path integration in desert ants, Cataglyphis fortis: how to make a homing ant run away from home. Proc R Soc B-Biol Sci 271:1485–1489CrossRefGoogle Scholar
  4. Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comput Biol 8:e1002336CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bisch-Knaden S, Wehner R (2001) Egocentric information helps desert ants to navigate around familiar obstacles. J Exp Biol 204:4177–4184PubMedGoogle Scholar
  6. Bregy P, Sommer S, Wehner R (2008) Nest-mark orientation versus vector navigation in desert ants. J Exp Biol 211:1868–1873CrossRefPubMedGoogle Scholar
  7. Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853CrossRefPubMedGoogle Scholar
  8. Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564CrossRefGoogle Scholar
  9. Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151:521–543CrossRefGoogle Scholar
  10. Cheng K (1988) Some psychophysics of the pigeon’s use of landmarks. J Comp Physiol A 162:815–826CrossRefPubMedGoogle Scholar
  11. Cheng K (1989) The vector sum model of pigeon landmark use. J Exp Psychol Anim Behav Process 15:366–375CrossRefGoogle Scholar
  12. Cheng K (2012) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Zentall TR, Wasserman EA (eds) The Oxford handbook of comparative cognition. Oxford University Press, Oxford, pp 347–365Google Scholar
  13. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133:625–637CrossRefPubMedGoogle Scholar
  14. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Process 80:261–268CrossRefGoogle Scholar
  15. Cheng K, Middleton EJT, Wehner R (2012) Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J Exp Biol 215:3169–3174CrossRefPubMedGoogle Scholar
  16. Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R (2014) Beginnings of a synthetic approach to desert ant navigation. Behav Process 102:51–61CrossRefGoogle Scholar
  17. Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932CrossRefPubMedGoogle Scholar
  18. Collett TS, Cartwright BA, Smith BA (1986) Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A 158:835–851CrossRefPubMedGoogle Scholar
  19. Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272CrossRefGoogle Scholar
  20. Collett TS, Collett M, Wehner R (2001) The guidance of desert ants by extended landmarks. J Exp Biol 204:1635–1639PubMedGoogle Scholar
  21. Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800CrossRefPubMedGoogle Scholar
  22. Cruse H, Wehner R (2011) No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput Biol 7:e1002009CrossRefPubMedPubMedCentralGoogle Scholar
  23. Deneve S, Pouget A (2004) Bayesian multisensory integration and cross-modal spatial links. J Physiol Paris 98:249–258CrossRefPubMedGoogle Scholar
  24. el Jundi B, Pfeiffer K, Heinze S, Homberg U (2014) Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A 200:575–589Google Scholar
  25. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433CrossRefPubMedGoogle Scholar
  26. Fent K (1986) Polarized skylight orientation in the desert ant Cataglyphis. J Comp Physiol A 158:145–150CrossRefGoogle Scholar
  27. Fent K, Wehner R (1985) A celestial compass in the desert ant Cataglyphis. Science 228:192–194CrossRefPubMedGoogle Scholar
  28. Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 206:535–541Google Scholar
  29. Fukushi T, Wehner R (2004) Navigation in wood ants Formica japonica: context dependent use of landmarks. J Exp Biol 207:3431–3439CrossRefPubMedGoogle Scholar
  30. Graham P, Cheng K (2009a) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937CrossRefPubMedGoogle Scholar
  31. Graham P, Cheng K (2009b) Which portion of the natural panorama is used for view based navigation in the Australian desert ant? J Comp Physiol A 195:681–689CrossRefGoogle Scholar
  32. Hoinville T, Wehner R, Cruse H (2012) Learning and retrieval of memory elements in a navigation task. Proc Int Conf, Living Mach 7375:120–131Google Scholar
  33. Kohler M, Wehner R (2005) Idiosyncratic route memories in desert ants, Melophorus bagoti: how do they interact with path integration vectors? Neurobiol Learn Mem 83:1–12CrossRefPubMedGoogle Scholar
  34. Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS One 2:e943CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lebhardt F, Ronacher B (2014) Interactions of the polarization and the sun compass in path integration of desert ants. J Comp Physiol A 200:711–720CrossRefGoogle Scholar
  36. Legge ELG, Spetch ML, Cheng K (2010) Not using the obvious: desert ants, Melophorus bagoti, learn local vectors but not beacons in an arena. Anim Cogn 13:849–860CrossRefPubMedGoogle Scholar
  37. Legge ELG, Wystrach A, Spetch ML, Cheng K (2014) Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues. J Exp Biol 217:4159–4166CrossRefPubMedGoogle Scholar
  38. Lent D, Graham P, Collett TS (2013) Visual scene perception in navigating wood ants. Curr Biol 23:684–690CrossRefPubMedGoogle Scholar
  39. Ma WJ, Jazayeri M (2014) Neural coding of uncertainty and probability. Annu Rev Neurosci 37:205–220CrossRefPubMedGoogle Scholar
  40. Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23:944–954CrossRefGoogle Scholar
  41. Menzel R, Greggers U (2015) The memory structure of navigation in honeybees. J Comp Physiol A 201:547–561CrossRefGoogle Scholar
  42. Merkle T, Wehner R (2009) How flexible is the systematic search behaviour of desert ants? Anim Behav 77:1051–1056CrossRefGoogle Scholar
  43. Merkle T, Knaden M, Wehner R (2006) Uncertainty about nest position influences systematic search strategies in desert ants. J Exp Biol 209:3545–3549CrossRefPubMedGoogle Scholar
  44. Möller R (2012) A model of ant navigation based on visual prediction. J Theor Biol 305:118–130CrossRefPubMedGoogle Scholar
  45. Müller M, Wehner R (2007) Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–594CrossRefPubMedGoogle Scholar
  46. Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Aust J Zool 53:301–311CrossRefGoogle Scholar
  47. Narendra A (2007a) Homing strategies of the Australian desert ant Melophorus bagoti I. Proportional path integration takes the ant half-way home. J Exp Biol 210:1798–1803CrossRefPubMedGoogle Scholar
  48. Narendra A (2007b) Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1804–1812CrossRefPubMedGoogle Scholar
  49. Narendra A, Si A, Sulikowski D, Cheng K (2007) Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti. Behav Ecol Sociobiol 61:1543–1553CrossRefGoogle Scholar
  50. Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B-Biol Sci 280:20130683CrossRefGoogle Scholar
  51. Pouget A, Beck JM, Ma WJ, Latham PE (2013) Probabilistic brains: knowns and unknowns. Nature Neurosci 16:1170–1178CrossRefPubMedPubMedCentralGoogle Scholar
  52. Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370CrossRefPubMedGoogle Scholar
  53. Ronacher B (2008) Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol News 11:53–62Google Scholar
  54. Rossel S, Wehner R (1984) Celestial orientation in bees: the use of spectral cues. J Comp Physiol A 155:605–613CrossRefGoogle Scholar
  55. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131CrossRefGoogle Scholar
  56. Santschi F (1911) Sur le mécanisme de l’orientation chez les fourmis. Revue Suisse Zool 19:303–338Google Scholar
  57. Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038CrossRefGoogle Scholar
  58. Schultheiss P, Cheng K, Reynolds AM (2015) Searching behavior in social Hymenoptera. Learn Motiv 50:59–67CrossRefGoogle Scholar
  59. Schultheiss P, Stannard T, Pereira S, Reynolds AM, Wehner R, Cheng K (2016) Similarities and differences in path integration and search in two species of desert ants inhabiting a visually rich and a visually barren habitat. Behav Ecol Sociobiol. doi: 10.1007/s00265-016-2140-0
  60. Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orientation and angular path integration. Nature 521:186–191CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sommer S, von Beeren C, Wehner R (2008) Multiroute memories in desert ants. Proc Natl Acad Sci USA 105:317–322CrossRefPubMedGoogle Scholar
  62. Steck K, Hansson BS, Knaden M (2011) Desert ants benefit from combining visual and olfactory landmarks. J Exp Biol 214:1307–1312CrossRefPubMedGoogle Scholar
  63. Strausfeld NJ (1999) A brain region in insects that supervises walking. Prog Brain Res 123:273–284CrossRefPubMedGoogle Scholar
  64. Vickerstaff RJ, Di Paolo EA (2005) Evolving neural models of path integration. J Exp Biol 208:3349–3366CrossRefPubMedGoogle Scholar
  65. von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148CrossRefPubMedGoogle Scholar
  66. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, BerlinCrossRefGoogle Scholar
  67. Warren WHJ, Kay BA, Zosh WD, Duchon AP, Sahue S (2001) Optic flow is used to control human walking. Nature Neurosci 4:213–216CrossRefPubMedGoogle Scholar
  68. Wehner R (1970) Die Konkurrenz von Sonnenkompass- und Horizontmarken-Orientierung bei der Wüstenameise Cataglyphis bicolor (Hymenoptera, Formicidae). Verhandlung Deutschen Zool Gesellschaft 64:238–242Google Scholar
  69. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII//6c. Springer, Berlin, pp 287–616Google Scholar
  70. Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritte Zool 39:103–143Google Scholar
  71. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser Verlag, Basel, pp 145–185CrossRefGoogle Scholar
  72. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588CrossRefGoogle Scholar
  73. Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96Google Scholar
  74. Wehner R, Duelli P (1971) The spatial orientation of desert ants, Cataglyphis bicolor, before sunrise and after sunset. Experientia 27:1364–1366CrossRefGoogle Scholar
  75. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wehner R, Räber F (1979) Visual spatial memory in desert ants, genus Cataglyphis (Formicidae, Hymenoptera). Experientia 35:1569–1571CrossRefGoogle Scholar
  77. Wehner R, Rössler W (2013) Bounded plasticity in the ant’s navigational toolkit. In: Menzel R, Benjamin PR (eds) Invertebrate learning and memory. Elsevier, Amsterdam, pp 514–529CrossRefGoogle Scholar
  78. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338CrossRefGoogle Scholar
  79. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30CrossRefGoogle Scholar
  80. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  81. Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79CrossRefPubMedGoogle Scholar
  82. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967CrossRefPubMedGoogle Scholar
  83. Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207CrossRefPubMedGoogle Scholar
  84. Wolf H, Wehner R (2000) Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J Exp Biol 203:857–868PubMedGoogle Scholar
  85. Wystrach A, Schwarz S, Schultheiss P, Beugnon G, Cheng K (2011) Views, landmarks, and routes: how do desert ants negotiate an obstacle course? J Comp Physiol A 197:167–179CrossRefGoogle Scholar
  86. Wystrach A, Schwarz S, Baniel A, Cheng K (2013) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B-Biol Sci 280:20131677CrossRefGoogle Scholar
  87. Wystrach A, Mangan M, Webb B (2015) Optimal cue integration in ants. Proc R Soc B-Biol Sci 282:20151484CrossRefGoogle Scholar
  88. Zeil J (2012) Visual homing: an insect perspective. Curr Opinion Neurobiol 22:285–293CrossRefGoogle Scholar
  89. Zeil J, Hofmann MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Optical Soc Am 20:450–469CrossRefGoogle Scholar
  90. Zollikofer CPE, Wehner R, Fukushi T (1995) Optical scaling in conspecific Cataglyphis ants. J Exp Biol 198:1637–1646PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rüdiger Wehner
    • 1
  • Thierry Hoinville
    • 2
  • Holk Cruse
    • 2
  • Ken Cheng
    • 3
  1. 1.Brain Research InstituteUniversity of ZurichZurichSwitzerland
  2. 2.Department of Biological CyberneticsBielefeld UniversityBielefeldGermany
  3. 3.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations