Journal of Comparative Physiology A

, Volume 202, Issue 3, pp 235–245 | Cite as

Visual response properties of neurons in four areas of the avian pallium

Original Paper

Abstract

In the present study we investigate the visual responsiveness of neurons in the entopallium, arcopallium, nidopallium, and hippocampus of pigeons. Pigeons were presented with 12 different stimuli, including three stimuli of a pigeon (a portrait of a pigeon’s face, a profile view of a pigeon’s face, and a picture of a whole pigeon). A total of 53 cells were recorded from the entopallium, 65 from the arcopallium, 32 from the nidopallium, and 67 from the hippocampus. Although a number of neurons were selective for certain colours and shapes, no neurons were solely selective for the three pigeon stimuli. This finding contrasts with previous studies across a range of mammals demonstrating selective firing to images of conspecifics. Rather than reflecting an absence of these cells in pigeons, we argue our findings may reflect the difficulty pigeons have in understanding the correspondence between 2D representations of 3D stimuli.

Keywords

Avian pallium Visually responsive Stimulus selective Face cell Grandmother cell 

Notes

Acknowledgments

This research was supported by a Royal Society of New Zealand Marsden Foundation Grant UOO703 to Michael Colombo. All experimental procedures were approved by the University of Otago Animal Ethics Committee and conducted in accordance with the University of Otago’s Code of Ethical Conduct for the Manipulation of Animals.

References

  1. Aoki N, Izawa EI, Yanagihara S, Matsushima T (2003) Neural correlates of memorized associations and cued movements in archistriatum of the domestic chick. Eur J Neurosci 17:1935–1946. doi: 10.1046/j.1460-9568.2003.02632.x CrossRefPubMedGoogle Scholar
  2. Aust U, Braunöder E (2015) Transfer between local and global processing levels by pigeon (Columba livia) and humans (Homo sapiens) in exemplar-and rule-based categorization tasks. J Comp Psychol 129:1–16. doi: 10.1037/a0037691 CrossRefPubMedGoogle Scholar
  3. Barr R (2010) Transfer of learning between 2D and 3D sources during infancy: informing theory and practice. Dev Rev 30:128–154. doi: 10.1016/j.dr.2010.03.001 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bilkey DK, Russell N, Colombo M (2003) A lightweight microdrive for single-unit recording in freely moving rats and pigeons. Methods 30:152–158. doi: 10.1016/S1046-2023(03)00076-8 CrossRefPubMedGoogle Scholar
  5. Birkhead T (2012) Bird sense: what it’s like to be a bird. Bloomsbury Publishing, LondonGoogle Scholar
  6. Brown PL, Jenkins HM (1968) Auto-shaping of the pigeon’s key peck. J Exp Anal Behav 11:1–8. doi: 10.1901/jeab.1968.11-1 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Budzynski CA, Bingman VP (2004) Participation of the thalamofugal visual pathway in a coarse pattern discrimination task in an open arena. Behav Brain Res 153:543–556. doi: 10.1016/j.bbr.2004.01.011 CrossRefPubMedGoogle Scholar
  8. Cavoto KK, Cook RG (2001) Cognitive precedence for local information in hierarchical stimulus processing by pigeons. J Exp Psychol Anim Behav Process 27:3–16. doi: 10.1037/0097-7403.27.1.3 CrossRefPubMedGoogle Scholar
  9. Colombo M, Scarf D (2012) Neurophysiological studies of learning and memory in pigeons. Comp Cogn Behav Rev 7:23–43. doi: 10.3819/ccbr.2012.70002 CrossRefGoogle Scholar
  10. Diekamp B, Prior H, Güntürkün O (1999) Functional lateralization, interhemispheric transfer and position bias in serial reversal learning in pigeons (Columba livia). Anim Cogn 2:187–196. doi: 10.1007/s100710050039 CrossRefGoogle Scholar
  11. Dittrich L, Adam R, Ünver E, Güntürkün O (2010) Pigeons identify individual humans but show no sign of recognizing them in photographs. Behav Processes 83:82–89. doi: 10.1016/j.beproc.2009.10.006 CrossRefPubMedGoogle Scholar
  12. Freiwald WA, Tsao DY, Livingstone MS (2009) A face feature space in the macaque temporal lobe. Nat Neurosci 12:1187–1196. doi: 10.1038/nn.2363 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gibson BM, Wasserman EA, Gosselin F, Schyns PG (2005) Applying bubbles to localize features that control pigeons’ visual discrimination behavior. J Exp Psychol Anim Behav Process 31:376–382. doi: 10.1037/0097-7403.31.3.376 CrossRefPubMedGoogle Scholar
  14. Goodale M, Milner D (2004) Sight unseen: An exploration of conscious and unconscious vision. Oxford University Press, OxfordGoogle Scholar
  15. Gu Y, Wang Y, Zhang T, Wang S-R (2002) Stimulus size selectivity and receptive field organization of ectostriatal neurons in the pigeon. J Comp Physiol A 188:173–178. doi: 10.1007/s00359-002-0290-1 CrossRefGoogle Scholar
  16. Güntürkün O (1985) Lateralization of visually controlled behavior in pigeons. Physiol Behav 34:575–577. doi: 10.1016/0031-9384(85)90051-4 CrossRefPubMedGoogle Scholar
  17. Güntürkün O (1997) Avian visual lateralization: a review. Neuroreport 8:iii–xiPubMedGoogle Scholar
  18. Güntürkün O (2000) Sensory physiology: Vision. In: Causey Whittow G (ed) Sturkie’s Avian Physiology. Academic Press, Manoa, pp 1–19CrossRefGoogle Scholar
  19. Güntürkün O (2002) Hemispheric asymmetry in the visual system of birds. In: Hugdahl K, Davidson RJ (eds) Brain Asymmetry, 2nd edn. MIT Press, Cambridge, pp 3–36Google Scholar
  20. Güntürkün O (2005) The avian ‘prefrontal cortex’and cognition. Curr Opin Neurobiol 15:686–693. doi: 10.1016/j.conb.2005.10.003 CrossRefPubMedGoogle Scholar
  21. Güntürkün O, Kesch S (1987) Visual lateralization during feeding in pigeons. Behav Neurosci 101:433. doi: 10.1037/0735-7044.101.3.433 CrossRefPubMedGoogle Scholar
  22. Hegdé J, Van Essen DC (2000) Selectivity for complex shapes in primate visual area V2. J Neurosci 20:RC61PubMedGoogle Scholar
  23. Jarvis ED et al (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159CrossRefPubMedGoogle Scholar
  24. Karten HJ (1969) The Organization of the Avian Telencephalon and Some Speculations on the Phylogeny of the Amniote Telencephalon. Ann NY Acad Sci 167:164–179. doi: 10.1111/j.1749-6632.1969.tb20442.x CrossRefGoogle Scholar
  25. Karten HJ, Hodos W (1967) A Stereotaxic Atlas of the Brain of the Pigeon (Columba Livia). Johns Hopkins Press, BaltimoreGoogle Scholar
  26. Kendrick K, Baldwin B (1987) Cells in temporal cortex of conscious sheep can respond preferentially to the sight of faces. Science 236:448–450. doi: 10.1126/science.3563521 CrossRefPubMedGoogle Scholar
  27. Kendrick KM, da Costa AP, Leigh AE, Hinton MR, Peirce JW (2001) Sheep don’t forget a face. Nature 414:165–166. doi: 10.1038/35102669 CrossRefPubMedGoogle Scholar
  28. Kröner S, Güntürkün O (1999) Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro-and anterograde pathway tracing study. J Comp Neurol 407:228–260. doi: 10.1002/(SICI)1096-9861(19990503)407:2<228:AID-CNE6>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  29. Krützfeldt NO, Wild JM (2005) Definition and novel connections of the entopallium in the pigeon (Columba livia). J Comp Neurol 490:40–56. doi: 10.1002/cne.20627 CrossRefPubMedGoogle Scholar
  30. Leopold DA, Rhodes G (2010) A comparative view of face perception. J Comp Psychol 124:233–251. doi: 10.1037/a0019460 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Manns M (2006) The epigenetic control of asymmetry formation. In: Malashichev Y, Deckel AW (eds) Behavioural and morphological asymmetries in vertebrates. Landes Bioscience, Georgetown, pp 45–78Google Scholar
  32. Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402. doi: 10.1146/annurev.ne.16.030193.002101 CrossRefPubMedGoogle Scholar
  33. Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785. doi: 10.1016/j.neuropsychologia.2007.10.005 CrossRefPubMedGoogle Scholar
  34. Mishkin M (1982) A memory system in the monkey. Philos T Roy Soc B 298:85–95. doi: 10.1098/rstb.1982.0074 CrossRefGoogle Scholar
  35. Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417. doi: 10.1016/0166-2236(83)90190-X CrossRefGoogle Scholar
  36. Nottelmann F, Wohlschläger A, Güntürkün O (2002) Unihemispheric memory in pigeons-knowledge, the left hemisphere is reluctant to share. Behav Brain Res 133:309–315. doi: 10.1016/S0166-4328(02)00011-6 CrossRefPubMedGoogle Scholar
  37. Pinaud R, Terleph TA (2008) A songbird forebrain area potentially involved in auditory discrimination and memory formation. J Biosci (Bangalore) 33:145–155CrossRefGoogle Scholar
  38. Pohl W (1973) Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J Comp Physiol Psych 82:227–239. doi: 10.1037/h0033922 CrossRefGoogle Scholar
  39. Reiner A et al (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414. doi: 10.1002/cne.20118 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Scarf D (2013) Visual acuity: bird vision offers sharp insight. Nature 502:624. doi: 10.1038/502624e CrossRefPubMedGoogle Scholar
  41. Scarf D et al (2011) Brain cells in the avian ‘prefrontal cortex’code for features of slot-machine-like gambling. PLoS ONE 6:e14589. doi: 10.1371/journal.pone.0014589 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Schall U, Müller BW, Kärgel C, Güntürkün O (2015) Electrophysiological mismatch response recorded in awake pigeons from the avian functional equivalent of the primary auditory cortex. NeuroReport 26:239–244. doi: 10.1097/WNR.0000000000000323 CrossRefPubMedGoogle Scholar
  43. Schneider GE (1969) Two visual systems. Science 163:895–902. doi: 10.1126/science.163.3870.895 CrossRefPubMedGoogle Scholar
  44. Shimizu T, Bowers AN (1999) Visual circuits of the avian telencephalon: evolutionary implications. Behav Brain Res 98:183–191. doi: 10.1016/S0166-4328(98)00083-7 CrossRefPubMedGoogle Scholar
  45. Shimizu T, Patton TB, Husband SA (2010) Avian visual behavior and the organization of the telencephalon. Brain Behav Evol 75:204–217. doi: 10.1159/000314283 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Spetch ML, Friedman A (2006) Pigeons see correspondence between objects and their pictures. Psychol Sci 17:966–972. doi: 10.1111/j.1467-9280.2006.01814.x CrossRefPubMedGoogle Scholar
  47. Ungerleider LG, Haxby JV (1994) ‘What’and ‘where’in the human brain. Curr Opin Neurobiol 4:157–165. doi: 10.1016/0959-4388(94)90066-3 CrossRefPubMedGoogle Scholar
  48. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of Visual Behavior. MIT Press, Cambridge, pp 549–586Google Scholar
  49. Valencia-Alfonso C-E, Verhaal J, Güntürkün O (2009) Ascending and descending mechanisms of visual lateralization in pigeons. Philos T Roy Soc B 364:955–963. doi: 10.1098/rstb.2008.0240 CrossRefGoogle Scholar
  50. Watanabe S (1997) Visual discrimination of real objects and pictures in pigeons. Anim Learn Behav 25:185–192. doi: 10.3758/BF03199057 CrossRefGoogle Scholar
  51. Wild JM (1987) The avian somatosensory system: connections of regions of body representation in the forebrain of the pigeon. Brain Res 412:205–223. doi: 10.1016/0006-8993(87)91127-9 CrossRefPubMedGoogle Scholar
  52. Wild J, Arends J, Zeigler HP (1985) Telencephalic connections of the trigeminal system in the pigeon (Columba livia): a trigeminal sensorimotor circuit. J Comp Neurol 234:441–464. doi: 10.1002/cne.902340404 CrossRefPubMedGoogle Scholar
  53. Wu LQ, Niu YQ, Yang J, Wang S-R (2005) Tectal neurons signal impending collision of looming objects in the pigeon. Eur J Neurosci 22:2325–2331. doi: 10.1111/j.1460-9568.2005.04397.x CrossRefPubMedGoogle Scholar
  54. Xiao Q, Li D-P, Wang S-R (2006) Looming-sensitive responses and receptive field organization of telencephalic neurons in the pigeon. Brain Res Bull 68:322–328. doi: 10.1016/j.brainresbull.2005.09.003 CrossRefPubMedGoogle Scholar
  55. Yamazaki Y, Aust U, Huber L, Hausmann M, Güntürkün O (2007) Lateralized cognition: asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition 104:315–344. doi: 10.1016/j.cognition.2006.07.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations