Advertisement

Journal of Comparative Physiology A

, Volume 202, Issue 3, pp 163–183 | Cite as

Hierarchical emergence of sequence sensitivity in the songbird auditory forebrain

  • Satoko Ono
  • Kazuo Okanoya
  • Yoshimasa SekiEmail author
Original Paper

Abstract

Bengalese finches (Lonchura striata var. domestica) generate more complex sequences in their songs than zebra finches. Because of this, we chose this species to explore the signal processing of sound sequence in the primary auditory forebrain area, field L, and in a secondary area, the caudomedial nidopallium (NCM). We simultaneously recorded activity from multiple single units in urethane-anesthetized birds. We successfully replicated the results of a previous study in awake zebra finches examining stimulus-specific habituation of NCM neurons to conspecific songs. Then, we used an oddball paradigm and compared the neural response to deviant sounds that were presented infrequently, with the response to standard sounds, which were presented frequently. In a single sound oddball task, two different song elements were assigned for the deviant and standard sounds. The response bias to deviant elements was larger in NCM than in field L. In a triplet sequence oddball task, two triplet sequences containing elements ABC and ACB were assigned as the deviant and standard. Only neurons in NCM that displayed broad-shaped spike waveforms had sensitivity to the difference in element order. Our results suggest the hierarchical processing of complex sound sequences in the songbird auditory forebrain.

Keywords

Field L Habituation NCM caudomedial nidopallium Oddball task Songbird 

Abbreviations

BOS

Bird’s own song

CLM

Caudolateral mesopallium

CMM

Caudomedial mesopallium

Dv

Deviant stimulus

IOI

Inter-onset interval

ISI

Inter-spike interval

NCM

Caudomedial nidopallium

RMS

Root-mean-square

St

Standard stimulus

Notes

Acknowledgments

We thank Dr. Jun Nishikawa for his instruction in the surgical techniques and the use of the data acquisition software. We also thank Dr. Ryosuke Tachibana for his helpful comments in the data analysis and discussion. This work was supported by Grant in Aids from MEXT #23240033, #25590202 and #26240019 to Kazuo Okanoya, and JST ERATO Okanoya Emotional Information Project. The experimental procedures and housing conditions were approved by the Institutional Animal Care and Use Committee at the University of Tokyo.

Supplementary material

359_2016_1070_MOESM1_ESM.pdf (550 kb)
Supplementary material 1 (PDF 550 kb)

References

  1. Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29:7359–7363. doi: 10.1523/JNEUROSCI.0793-09.2009 CrossRefPubMedGoogle Scholar
  2. Astikainen P, Mällo T, Ruusuvirta T, Näätänen R (2014) Electrophysiological evidence for change detection in speech sound patterns by anesthetized rats. Front Neurosci 8:1–6. doi: 10.3389/fnins.2014.00374 CrossRefGoogle Scholar
  3. Beckers GJL, Gahr M (2010) Neural processing of short-term recurrence in songbird vocal communication. PLoS One 5:e11129. doi: 10.1371/journal.pone.0011129 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Beckers GJL, Gahr M (2012) Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain. J Neurosci 32:10594–10608. doi: 10.1523/JNEUROSCI.6045-11.2012 CrossRefPubMedGoogle Scholar
  5. Berwick RC, Okanoya K, Beckers GJL, Bolhuis JJ (2011) Songs to syntax: the linguistics of birdsong. Trends Cogn Sci 15:113–121. doi: 10.1016/j.tics.2011.01.002 CrossRefPubMedGoogle Scholar
  6. Bolhuis JJ, Gahr M (2006) Neural mechanisms of birdsong memory. Nat Rev Neurosci 7:347–357. doi: 10.1038/nrn1904 CrossRefPubMedGoogle Scholar
  7. Bolhuis JJ, Okanoya K, Scharff C (2010) Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 11:747–759. doi: 10.1038/nrn2931 CrossRefPubMedGoogle Scholar
  8. Capsius B, Leppelsack HJ (1996) Influence of urethane anesthesia on neural processing in the auditory cortex analogue of a songbird. Hear Res 96:59–70. doi: 10.1016/0378-5955(96)00038-X CrossRefPubMedGoogle Scholar
  9. Catchpole CK, Slater PJB (2008) Bird song: biological themes and variations, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Chen J, ten Cate C (2014) Zebra finches can use positional and transitional cues to distinguish vocal element strings. Behav Processes 117:29–34. doi: 10.1016/j.beproc.2014.09.004 CrossRefPubMedGoogle Scholar
  11. Chew SJ, Mello C, Nottebohm F et al (1995) Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc Natl Acad Sci 92:3406–3410. doi: 10.1073/pnas.92.8.3406 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Chew SJ, Vicario DS, Nottebohm F (1996) A large-capacity memory system that recognizes the calls and songs of individual birds. Proc Natl Acad Sci 93:1950–1955. doi: 10.1073/pnas.93.5.1950 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Comins JA, Gentner TQ (2013) Perceptual categories enable pattern generalization in songbirds. Cognition 128:113–118. doi: 10.1016/j.cognition.2013.03.014 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dong S, Clayton DF (2009) Habituation in songbirds. Neurobiol Learn Mem 92:183–188. doi: 10.1016/j.nlm.2008.09.009 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Doupe AJ (1997) Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. J Neurosci 17:1147–1167PubMedGoogle Scholar
  16. Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404. doi: 10.1002/cne.903250306 CrossRefPubMedGoogle Scholar
  17. Gentner TQ, Hulse SH, Bentley GE, Ball GF (2000) Individual vocal recognition and the effect of partial lesions to HVc on discrimination, learning, and categorization of conspecific song in adult songbirds. J Neurobiol 42:117–133CrossRefPubMedGoogle Scholar
  18. Grace JA, Amin N, Singh NC, Theunissen FE (2003) Selectivity for conspecific song in the zebra finch auditory forebrain. J Neurophysiol 89:472–487. doi: 10.1152/jn.00088.2002 CrossRefPubMedGoogle Scholar
  19. Hahnloser RHR, Kotowicz A (2010) Auditory representations and memory in birdsong learning. Curr Opin Neurobiol 20:332–339. doi: 10.1016/j.conb.2010.02.011 CrossRefPubMedGoogle Scholar
  20. Kato Y, Kato M, Hasegawa T, Okanoya K (2010) Song memory in female birds: neuronal activation suggests phonological coding. Neuroreport 21:404–409. doi: 10.1097/WNR.0b013e32833730b7 CrossRefPubMedGoogle Scholar
  21. Kato Y, Kato M, Okanoya K (2012) Sequential information of self-produced song is represented in the auditory areas in male Bengalese finches. Neuroreport 23:488–492. doi: 10.1097/WNR.0b013e32835375ef CrossRefPubMedGoogle Scholar
  22. Kojima S, Doupe AJ (2008) Neural encoding of auditory temporal context in a songbird basal ganglia nucleus, and its independence of birds’ song experience. Eur J Neurosci 27:1231–1244. doi: 10.1111/j.1460-9568.2008.06083.x PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kozlov AS, Gentner TQ (2014) Central auditory neurons display flexible feature recombination functions. J Neurophysiol 111:1183–1189. doi: 10.1152/jn.00637.2013 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Kröner S, Güntürkün O (1999) Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J Comp Neurol 407:228–260. doi: 10.1002/(SICI)1096-9861(19990503)407:2<228:AID-CNE6>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  25. Lewicki MS, Arthur BJ (1996) Hierarchical organization of auditory temporal context sensitivity. J Neurosci 16:6987–6998PubMedGoogle Scholar
  26. Lu K, Vicario DS (2014) Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain. Proc Natl Acad Sci USA 111:14553–14558. doi: 10.1073/pnas.1412109111 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Lynch KS, Kleitz-Nelson HK, Ball GF (2013) HVC lesions modify immediate early gene expression in auditory forebrain regions of femalesongbirds. Dev Neurobiol 73:315–323. doi: 10.1002/dneu.22062 CrossRefPubMedGoogle Scholar
  28. Malmierca MS, Cristaudo S, Pérez-González D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493. doi: 10.1523/JNEUROSCI.4153-08.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Margoliash D, Fortune ES (1992) Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. J Neurosci 12:4309–4326PubMedGoogle Scholar
  30. Meliza C, Margoliash D (2012) Emergence of selectivity and tolerance in the avian auditory cortex. J Neurosci 32:15158–15168. doi: 10.1523/JNEUROSCI.0845-12.2012 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Meliza C, Chi Z, Margoliash D (2010) Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework. J Neurophysiol 103:1195–1208. doi: 10.1152/jn.00464.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Mello C, Nottebohm F, Clayton D (1995) Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene’s response to that song in zebra finch telencephalon. J Neurosci 15:6919–6925PubMedGoogle Scholar
  33. Menardy F, Touiki K, Dutrieux G et al (2012) Social experience affects neuronal responses to male calls in adult female zebra finches. Eur J Neurosci 35:1322–1336. doi: 10.1111/j.1460-9568.2012.08047.x CrossRefPubMedGoogle Scholar
  34. Miller-Sims VC, Bottjer SW (2014) Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds. J Neurophysiol 112:81–94. doi: 10.1152/jn.00484.2013 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Moore RC, Lee T, Theunissen FE (2013) Noise-invariant neurons in the avian auditory cortex: hearing the song in noise. PLoS Comput Biol 9:e1002942. doi: 10.1371/journal.pcbi.1002942 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Müller CM, Leppelsack H (1985) Feature extraction and tonotopic organization in the avian auditory forebrain. Exp Brain Res 59:587–599. doi: 10.1007/BF00261351 CrossRefPubMedGoogle Scholar
  37. Nakamura KZ, Okanoya K (2004) Neural correlates of song complexity in Bengalese finch high vocal center. Neuroreport 15:1359–1363. doi: 10.1097/01.wnr.0000125782.35268.d6 CrossRefPubMedGoogle Scholar
  38. Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223. doi: 10.1027/0269-8803.21.34.214 CrossRefGoogle Scholar
  39. Newport EL, Aslin RN (2004) Learning at a distance I. statistical learning of non-adjacent dependencies. Cogn Psychol 48:127–162. doi: 10.1016/S0010-0285(03)00128-2 CrossRefPubMedGoogle Scholar
  40. Nixdorf-Bergweiler BE, Bischof H-J (2007) A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata. National Center for Biotechnology Information, BethesdaGoogle Scholar
  41. Okanoya K (2004) The Bengalese finch: a window on the behavioral neurobiology of birdsong syntax. Ann N Y Acad Sci 1016:724–735. doi: 10.1196/annals.1298.026 CrossRefPubMedGoogle Scholar
  42. Okanoya K, Yamaguchi A (1997) Adult Bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. J Neurobiol 33:343–356. doi: 10.1002/(SICI)1097-4695 CrossRefPubMedGoogle Scholar
  43. Okanoya K, Tsumaki S, Honda E (2000) Perception of temporal properties in self-generated songs by Bengalese Finches (Lonchura striata var. domestica). J Comp Psychol 114:239–245. doi: 10.1037//0735 CrossRefPubMedGoogle Scholar
  44. Ondracek JJM, Hahnloser RHR (2013) Advances in understanding the auditory brain of songbirds. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer, New York, pp 347–388CrossRefGoogle Scholar
  45. Perks KE, Gentner TQ (2015) Subthreshold membrane responses underlying sparse spiking to natural vocal signals in auditory cortex. Eur J Neurosci 41:725–733. doi: 10.1111/ejn.12831 CrossRefPubMedGoogle Scholar
  46. Pfenning AR, Hara E, Whitney O et al (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846. doi: 10.1126/science.1256846 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Phan ML, Pytte CL, Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc Natl Acad Sci USA 103:1088–1093. doi: 10.1073/pnas.0510136103 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Pinaud R, Terleph TA (2008) A songbird forebrain area potentially involved in auditory discrimination and memory formation. J Biosci 33:145–155CrossRefPubMedGoogle Scholar
  49. Saffran JR, Aslin RN, Newport EL (1996) Statistical learning by 8-month-old infants. Science 274:1926–1928. doi: 10.1126/science.274.5294.1926 CrossRefPubMedGoogle Scholar
  50. Schneider DM, Woolley SMN (2013) Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron 79:141–152. doi: 10.1016/j.neuron.2013.04.038 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Seki Y, Suzuki K, Osawa AM, Okanoya K (2013) Songbirds and humans apply different strategies in a sound sequence discrimination task. Front Psychol 4:447. doi: 10.3389/fpsyg.2013.00447 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Smulders TV, Jarvis ED (2013) Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location. Neurobiol Learn Mem 106:163–176. doi: 10.1016/j.nlm.2013.08.010 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Stripling R, Volman SF, Clayton D (1997) Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. J Neurosci 17:3883–3893PubMedGoogle Scholar
  54. Stripling R, Kruse AA, Clayton DF (2001) Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities. J Neurobiol 48:163–180CrossRefPubMedGoogle Scholar
  55. Terleph TA, Mello CV, Vicario DS (2006) Auditory topography and temporal response dynamics of canary caudal telencephalon. J Neurobiol 66:281–292. doi: 10.1002/neu.20219 CrossRefPubMedGoogle Scholar
  56. Theunissen FE, Shaevitz SS (2006) Auditory processing of vocal sounds in birds. Curr Opin Neurobiol 16:400–407. doi: 10.1016/j.conb.2006.07.003 CrossRefPubMedGoogle Scholar
  57. Theunissen FE, Amin N, Shaevitz SS et al (2004) Song selectivity in the song system and in the auditory forebrain. Ann N Y Acad Sci 1016:222–245. doi: 10.1196/annals.1298.023 CrossRefPubMedGoogle Scholar
  58. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398. doi: 10.1038/nn1032 CrossRefPubMedGoogle Scholar
  59. Van Heijningen CAA, de Visser J, Zuidema W, ten Cate C (2009) Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proc Natl Acad Sci USA 106:20538–20543. doi: 10.1073/pnas.0908113106 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642. doi: 10.1002/(SICI)1096-9861(19960318)366:4<613:AID-CNE5>3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  61. Veit L, Nieder A (2013) Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat Commun 4:2878. doi: 10.1038/ncomms3878 CrossRefPubMedGoogle Scholar
  62. Woolley SMN (2013) The songbird auditory system. In: Helekar SA (ed) Animal Models of Speech and Language Disorders. Springer, New York, pp 61–88CrossRefGoogle Scholar
  63. Woolley SMN, Rubel EW (1997) Bengalese finches Lonchura Striata domestica depend upon auditory feedback for the maintenance of adult song. J Neurosci 17:6380–6390PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.ERATO, Okanoya Emotional Information Project, Japan Science and Technology AgencySaitamaJapan
  3. 3.Emotional Information Joint Research LaboratoryRIKEN BSISaitamaJapan
  4. 4.Faculty of LettersAichi UniversityAichiJapan

Personalised recommendations