Journal of Comparative Physiology A

, Volume 201, Issue 11, pp 1053–1061 | Cite as

Differential protein expression analysis following olfactory learning in Apis cerana

  • Li-Zhen Zhang
  • Wei-Yu Yan
  • Zi-Long Wang
  • Ya-Hui Guo
  • Yao Yi
  • Shao-Wu Zhang
  • Zhi-Jiang Zeng
Original Paper


Studies of olfactory learning in honeybees have helped to elucidate the neurobiological basis of learning and memory. In this study, protein expression changes following olfactory learning in Apis cerana were investigated using isobaric tags for relative and absolute quantification (iTRAQ) technology. A total of 2406 proteins were identified from the trained and untrained groups. Among these proteins, 147 were differentially expressed, with 87 up-regulated and 60 down-regulated in the trained group compared with the untrained group. These results suggest that the differentially expressed proteins may be involved in the regulation of olfactory learning and memory in A. cerana. The iTRAQ data can provide information on the global protein expression patterns associated with olfactory learning, which will facilitate our understanding of the molecular mechanisms of learning and memory of honeybees.


Apis cerana Proboscis extension response Learning and memory Isobaric tags for relative and absolute quantification (iTRAQ) 


A. cerana

Apis cerana

A. mellifera

Apis mellifera


RAC Serine/threonine-protein kinase


Calcium/calmodulin-dependent protein kinase


Isobaric tags for relative and absolute quantification


Microtubule-associated protein 2




Glutamate [NMDA] receptor-associated protein 1


The proboscis extension reflex




Phosphatidylcholineceramide cholinephosphotransferase 1


Orphan sodium- and chloride-dependent neurotransmitter transporter NTT73


Synaptosomal-associated protein 25




Vesicular acetylcholine transporter



This work was supported by the National Natural Science Foundation of China (No. 31260524, No. 31360587), the Earmarked Fund for the China Agriculture Research System (No. CARS-45-KXJ12) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20123603120005). All experimental procedures outlined in this work were performed in accordance with current Chinese laws on animal experimentation.

Compliance with ethical standards

Conflict of interest


Supplementary material

359_2015_1042_MOESM1_ESM.png (101 kb)
Figure S1 Olfactory PER conditioning of A. cerana. (a) Learning curve for odorant conditioning experiment with lemon and vanilla essence showing percentage of correct proboscis extension response (PER) (appropriately responding bees extend a proboscis only when they experience the rewarded stimulus). (b) Retention performance 24 h after conditioning, showing the proboscis extension response of bees in three retention tests. Standard error bars are shown. (PNG 101 kb)
359_2015_1042_MOESM2_ESM.png (156 kb)
Figure S2 Distribution of the protein sequences coverage. Different colors represent different sequence coverage ranges. The percentage of the pie chart illustrates the ratio of the protein quantity in different coverage ranges to the total proteins. (PNG 156 kb)
359_2015_1042_MOESM3_ESM.png (133 kb)
Figure S3 Peptide number distribution. The x-coordinate indicates the number of peptides identified per protein. The y-coordinate indicates the protein number. (PNG 133 kb)
359_2015_1042_MOESM4_ESM.png (108 kb)
Figure S4 Reproducibility analysis of the three biological replicates. The distribution of variation was analyzed by calculating the degree of variation based on the quantitative value of protein between duplicates. The degree of variation is the difference between duplicates of the same run. The degree of variation is the CV value of the quantitative ratio between duplicates of different runs. The x-coordinate indicates different variation levels. The y-coordinates on the left and right side represent the number of quantitative protein and the proportion of total quantitative protein accumulation, respectively. (PNG 108 kb)
359_2015_1042_MOESM5_ESM.xls (122 kb)
ESM1 (XLS 122 kb)
359_2015_1042_MOESM6_ESM.xls (571 kb)
ESM1 (XLS 571 kb)
359_2015_1042_MOESM7_ESM.xls (72 kb)
ESM1 (XLS 72 kb)


  1. Ai XY, Lin G, Sun LM, Hu CG, Guo WW, Deng XX, Zhang JZ (2012) A global view of gene activity at the flowering transition phase in precocious trifoliate orange and Its Wild-type [Poncirus trifoliate (L.) Raf.] by transcriptome and proteome analysis. Gene 510:47–48CrossRefPubMedGoogle Scholar
  2. Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119CrossRefPubMedGoogle Scholar
  3. Blenau W, Erber J, Baumann A (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J Neurochem 70:15–23CrossRefPubMedGoogle Scholar
  4. Brocher S, Artola A, Singer W (1992) Intracellular injection of Ca2+ chelators blocks induction of long-term depression in rat visual cortex. Proc Natl Acad Sci USA 89:123–127PubMedCentralCrossRefPubMedGoogle Scholar
  5. Cammarota M, Bernabeu R, Levi de Stein M, Izquierdo I, Medina JH (1998) Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur J Neurosci 10:2669–2676CrossRefPubMedGoogle Scholar
  6. Chen S (2001) The apicultural science in China. China Agriculture Press, BeijingGoogle Scholar
  7. Chen Z, Wang Q, Lin L, Tang Q, Edwards JL, Li S, Liu S (2012) Comparative Evaluation of Two Isobaric Labeling Tags, DiART and iTRAQ. Anal Chem 84:2908–2915CrossRefPubMedGoogle Scholar
  8. Collett TS, Graham P, Durier V (2003) Route learning by insects. Curr Opin Neurobiol 13:718–725CrossRefPubMedGoogle Scholar
  9. Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35:607–618PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cristino AS, Barchuk AR, Freitas FC, Narayanan RK, Biergans SD, Zhao Z, Simoes ZL, Reinhard J, Claudianos C (2014) Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee. Nat Commun 5:5529CrossRefPubMedGoogle Scholar
  11. Dacher M, Gauthier M (2008) Involvement of NO-synthase and nicotinic receptors in learning in the honey bee. Physiol Behav 95:200–207CrossRefPubMedGoogle Scholar
  12. Dateki M, Horii T, Kasuya Y, Mochizuki R, Nagao Y, Ishida J, Sugiyama F, Tanimoto K, Yagami K, Imai H, Fukamizu A (2005) Neurochondrin negatively regulates CaMKII phosphorylation, and nervous system-specific gene disruption results in epileptic seizure. J Biol Chem 280:20503–20508CrossRefPubMedGoogle Scholar
  13. de Castro BM, Pereira GS, Magalhães V, Rossato JI, De Jaeger X, Martins-Silva C, Leles B, Lima P, Gomez MV, Gainetdinov RR, Caron MG, Izquierdo I, Cammarota M, Prado VF, Prado MA (2009) Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. Genes Brain Behav 8:23–35CrossRefPubMedGoogle Scholar
  14. Drgonova J, Liu QR, Hall FS, Krieger RM, Uhl GR (2007) Deletion of v7-3 (SLC6A15) transporter allows assessment of its roles in synaptosomal proline uptake, leucine uptake and behaviors. Brain Res 1183:10–20PubMedCentralCrossRefPubMedGoogle Scholar
  15. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380PubMedGoogle Scholar
  16. Fiala A, Muller U, Menzel R (1999) Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee, Apis mellifera. J Neurosci 19:10125–10134PubMedGoogle Scholar
  17. Frings H (1944) The loci of olfactory end-organs in the honeybee Apis mellifera Linn. J. Exp Zool 97:123–134CrossRefGoogle Scholar
  18. Fujiwara T, Mishima T, Kofuji T, Chiba T, Tanaka K, Yamamoto A, Akagawa K (2006) Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26:5767–5776CrossRefPubMedGoogle Scholar
  19. Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66CrossRefPubMedGoogle Scholar
  20. Golimbet VE, Alfimova MV, Gritsenko IK, Lezheiko TV, Lavrushina OM, Abramova LI, Kaleda VG, Barkhatova AN, Sokolov AV, Ebstein RP (2010) Association between a synaptosomal protein (SNAP-25) gene polymorphism and verbal memory and attention in patients with endogenous psychoses and mentally healthy subjects. Neurosci Behav Physiol 40:461–465CrossRefPubMedGoogle Scholar
  21. Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y, Chen X, Li L, Wu S, Chen Y, Jiang H, Tan L, Xie J, Zhu X, Liang S, Deng H (2008) How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai) 40:426–436CrossRefGoogle Scholar
  22. Hai J, Su SH, Lin Q, Zhang L, Wan FJ, Li H, Chen YY, Lu Y (2010) Cognitive impairment and changes of neuronal plasticity in rats of chronic cerebral hypoperfusion associated with cerebral arteriovenous malformations. Acta Neurol Belg 110:180–185PubMedGoogle Scholar
  23. Hakimov HA, Walters S, Wright TC, Meidinger RG, Verschoor CP, Gadish M, Chiu DKY, Strömvik MV, Forsberg CW, Golovan SP (2009) Application of iTRAQ to catalogue the skeletal muscle proteome in pigs and assessment of effects of gender and diet dephytinization. Proteomics 9:4000–4016Google Scholar
  24. Hou Q, Gao X, Zhang X, Kong L, Wang X, Bian W, Tu Y, Jin M, Zhao G, Li B, Jing N, Yu L (2004) SNAP-25 in hippocampal CA1 region is involved in memory consolidation. Eur J Neurosci 20:1593–1603CrossRefPubMedGoogle Scholar
  25. Inoue K, Sato K, Tohyama M, Shimada S, Uhl GR (1996) Widespread brain distribution of mRNA encoding the orphan neurotransmitter transporter v7-3. Brain Res Mol Brain Res 37:217–223CrossRefPubMedGoogle Scholar
  26. Kucharski R, Mitri C, Grau Y, Maleszka R (2007) Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. Invert Neurosci 7:99–108CrossRefPubMedGoogle Scholar
  27. Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR (2012) Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics 11(M111):010645PubMedGoogle Scholar
  28. Letzkus P, Ribi WA, Wood JT, Zhu H, Zhang SW, Srinivasan MV (2006) Lateralization of olfaction in the honeybee Apis mellifera. Curr Biol 16:1471–1476CrossRefPubMedGoogle Scholar
  29. Lim SY, Suzuki H (2008) Dietary phosphatidylcholine improves maze-learning performance in adult mice. J Med Food 11:86–90CrossRefPubMedGoogle Scholar
  30. Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16:19–49CrossRefPubMedGoogle Scholar
  31. Martyn AC, De Jaeger X, Magalhães AC, Kesarwani R, Gonçalves DF, Raulic S, Guzman MS, Jackson MF, Izquierdo I, Macdonald JF, Prado MA, Prado VF (2012) Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proc Natl Acad Sci USA 109:17651–17656Google Scholar
  32. Matsumoto Y, Sandoz JC, Devaud JM, Lormant F, Mizunami M, Giurfa M (2014) Cyclic nucleotide–gated channels, Calmodulin, adenylyl cyclase and calcium/calmodulin-dependent protein kinase II are required for late but not early long-term memory formation in the honey bee. Learn Mem 21:272–286PubMedCentralCrossRefPubMedGoogle Scholar
  33. Menzel R, Hammer M, Müller U, Rosenboom H (1996) Behavioral, neural and cellular components underlying olfactory learning in the honeybee. J Physiol Paris 90:395–398CrossRefPubMedGoogle Scholar
  34. Musumeci G, Sciarretta C, Rodríguez-Moreno A, Al Banchaabouchi M, Negrete-Díaz V, Costanzi M, Berno V, Egorov AV, von Bohlen Und Halbach O, Cestari V, Delgado-García JM, Minichiello L (2009) TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci 29:10131–10143Google Scholar
  35. Qin QH, He XJ, Tian LQ, Zhang SW, Zeng ZJ (2012) Comparison of learning and memory of Apis cerana and Apis mellifera. J Comp Physiol A 198:777–786CrossRefGoogle Scholar
  36. Qin QH, Wang ZL, Tian LQ, Gan HY, Zhang SW, Zeng ZJ (2014) The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning. Insect Science 21:619–636CrossRefPubMedGoogle Scholar
  37. Sandoz JC, Deisig N, deBrito Sanchez M G, Giurfa M (2007) Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Front Behav Neurosci 1:5PubMedCentralCrossRefPubMedGoogle Scholar
  38. Shinozaki K, Maruyama K, Kume H, Kuzume H, Obata K (1997) A novel brain gene, norbin, induced by treatment of tetraethylammonium in rat hippocampal slice and accompanied with neurite-outgrowth in neuro 2a cells. Biochem Biophys Res Commun 240:766–771CrossRefPubMedGoogle Scholar
  39. Si A, Helliwell P, Maleszka R (2004) Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol Biochem Behav 77:191–197CrossRefPubMedGoogle Scholar
  40. Smith BH, Abramson CI, Nadel LI (1992) Insect learning: case studies in comparative psychology. In: Squire LR (ed) Encyclopedian of learning and memory. Macmillan, New YorkGoogle Scholar
  41. Song J, Sun R, Li D, Tan F, Li X, Jiang P, Huang X, Lin L, Deng Z, Zhang Y (2012) An improvement of shotgun proteomics analysis by adding next-generation sequencing transcriptome data in orange. PLoS One 7:e39494PubMedCentralCrossRefPubMedGoogle Scholar
  42. Spellmann I, Müller N, Musil R, Zill P, Douhet A, Dehning S, Cerovecki A, Bondy B, Möller H-J, Riedel M (2008) Associations of SNAP-25 polymorphisms with cognitive dysfunctions in Caucasian patients with schizophrenia during a brief trail of treatment with atypical antipsychotics. Eur Arch Psychiatr Clin Neurosci 258:335–344CrossRefGoogle Scholar
  43. Srinivasan MV (1994) Pattern recognition in the honeybee: recent progress. J Insect Physiol 40:183–194CrossRefGoogle Scholar
  44. Srinivasan MV, Zhang S, Zhu H (1998) Honeybees link sights to smells. Nature 396:637–638CrossRefGoogle Scholar
  45. Takeda K (1961) Classical conditioned response in the honey bee. J Inseet Physiol 6:168–179CrossRefGoogle Scholar
  46. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232PubMedCentralPubMedGoogle Scholar
  47. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Fischer, JenaCrossRefGoogle Scholar
  48. Wang Z, Tan K (2014) Comparative analysis of olfactory learning of Apis cerana and Apis mellifera. Apidologie 45:45–52CrossRefGoogle Scholar
  49. Wang H, Westin L, Nong Y, Birnbaum S, Bendor J, Brismar H, Nestler E, Aperia A, Flajolet M, Greengard P (2009) Norbin is an endogenous regulator of metabotropic glutamate receptor 5 signaling. Science 326:1554–1557PubMedCentralCrossRefPubMedGoogle Scholar
  50. Wang Q, Wen B, Yan G, Wei J, Xie L, Xu S, Jiang D, Wang T, Lin L, Zi J, Zhang J, Zhou R, Zhao H, Ren Z, Qu N, Lou X, Sun H, Du C, Chen C, Zhang S, Tan F, Xian Y, Gao Z, He M, Chen L, Zhao X, Xu P, Zhu Y, Yin X, Shen H, Zhang Y, Jiang J, Zhang C, Li L, Chang C, Ma J, Yan G, Yao J, Lu H, Ying W, Zhong F, He QY, Liu S (2013a) Qualitative and quantitative expression status of the human chromosome 20 genes in cancer tissues and the representative cell lines. J Proteome Res 12:151–161CrossRefPubMedGoogle Scholar
  51. Wang ZL, Wang H, Qin QH, Zeng ZJ (2013b) Gene expression analysis following olfactory learning in Apis mellifera. Mol Biol Rep 40:1631–1639CrossRefPubMedGoogle Scholar
  52. Woolf NJ, Zinnerman MD, Johnson GVW (1999) Hippocampal microtubule-associated protein-2 alterations with contextual memory. Brain Res 821:241–249CrossRefPubMedGoogle Scholar
  53. Wright GA, Skinner BD, Smith BH (2002) Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J Chem Ecol 28:721–740CrossRefPubMedGoogle Scholar
  54. Xia S, Miyashita T, Fu TF, Lin WY, Wu CL, Pyzocha L, Lin IR, Saitoe M, Tully T, Chiang AS (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Current Biol. 15:603–615CrossRefGoogle Scholar
  55. Yamaguchi M (2000) Role of regucalcin in brain calcium signaling. Life Sci 66(19):1769–1780CrossRefPubMedGoogle Scholar
  56. Yao D, He X, Wang JH, Zhao ZY (2011) Effects of PI3K/Akt signaling pathway on learning and memory abilities in neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi 13:424–427PubMedGoogle Scholar
  57. Zannat MT, Locatelli F, Rybak J, Menzel R, Leboulle G (2006) Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett 398:274–279CrossRefPubMedGoogle Scholar
  58. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 90:49–54CrossRefGoogle Scholar
  59. Zhang LZ, Zhang SW, Wang ZL, Yan WY, Zeng ZJ (2014) Cross-modal interaction between visual and olfactory learning in Apis cerana. J Comp Physiol A 200:899–909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Li-Zhen Zhang
    • 1
  • Wei-Yu Yan
    • 1
  • Zi-Long Wang
    • 1
  • Ya-Hui Guo
    • 1
  • Yao Yi
    • 1
  • Shao-Wu Zhang
    • 2
  • Zhi-Jiang Zeng
    • 1
  1. 1.Honeybee Research InstituteJiangxi Agricultural UniversityNanchangPeople’s Republic of China
  2. 2.Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations