Journal of Comparative Physiology A

, Volume 201, Issue 9, pp 947–956 | Cite as

The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems

  • T. Shomrat
  • A. L. Turchetti-Maia
  • N. Stern-Mentch
  • J. A. Basil
  • B. Hochner
Review

Abstract

In this review we show that the cephalopod vertical lobe (VL) provides a good system for assessing the level of evolutionary convergence of the function and organization of neuronal circuitry for mediating learning and memory in animals with complex behavior. The pioneering work of JZ Young described the morphological convergence of the VL with the mammalian hippocampus, cerebellum and the insect mushroom body. Studies in octopus and cuttlefish VL networks suggest evolutionary convergence into a universal organization of connectivity as a divergence-convergence (‘fan-out fan-in’) network with activity-dependent long-term plasticity mechanisms. Yet, these studies also show that the properties of the neurons, neurotransmitters, neuromodulators and mechanisms of long-term potentiation (LTP) induction and maintenance are highly variable among different species. This suggests that complex networks may have evolved independently multiple times and that even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.

Keywords

Invertebrate learning and memory Long-term potentiation Evolution of complex brain Learning and memory network 

Abbreviations

5-HT

Serotonin

AM

Amacrine interneuron

fPSP

Postsynaptic field potential

LFP

Local field potential

LTD

Long-term depression

LTP

Long-term potentiation

LN

Large efferent neuron

MYA

Million years ago

NMDAR

NMDA-like receptors

NO

Nitric oxide

NOS

Nitric oxide synthase

OA

Octopamine

SFL

Superior frontal lobe

TP

Tract potential

VL

Vertical lobe

Notes

Acknowledgments

Our research is supported by the United States–Israel Binational Science Foundation (Grant Numbers 2011466) to BH and JB, the Israel Science Foundation (Grant Numbers 1425-11) to BH and the Smith Family Laboratory at the Hebrew University. ALTM was supported by the Edmond and Lily Safra Center for Brain Sciences of the Hebrew University. We thank Jenny Kien for editorial assistance and suggestions. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

References

  1. Allcock AL, Lindgren A, Strugnell JM (2015) The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review. J Nat Hist 49:1373–1421. doi: 10.1080/00222933.2013.825342 CrossRefGoogle Scholar
  2. Amodio A, Fiorito G (2013) Observational and other tupes of learning in octopus. In: Menzel Randolf, Benjamin Paul R (eds) Invertebrate learning and memory. Academic Press, Düsseldorf, pp 293–302CrossRefGoogle Scholar
  3. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University Press, New YorkCrossRefGoogle Scholar
  4. Antonov I, Kandel ER, Hawkins RD (2010) Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 30:5781–5791. doi: 10.1523/jneurosci.4947-09.2010 CrossRefPubMedGoogle Scholar
  5. Aronson RB (1991) Ecology, paleobiology and evolutionary constraint in the octopus. Bull Mar Sci 49:245–255Google Scholar
  6. Boycott BB, Young JZ (1955) A memory system in Octopus vulgaris Lamarck. Proc R Soc Lond B Biol Sci 143:449–480. doi: 10.1098/rspb.1955.0024 CrossRefPubMedGoogle Scholar
  7. Brown E, Piscopo S (2013) Synaptic plasticity in cephalopods; more than just learning and memory? Invert Neurosci 13:35–44. doi: 10.1007/s10158-013-0150-4 CrossRefPubMedGoogle Scholar
  8. Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. W. H. Freeman, San FranciscoGoogle Scholar
  9. Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, Gohl D, Silies M, Certel S, Waddell S (2012) Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437. doi: 10.1038/nature11614 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chamberlain JAJ (1990) Jet propulsion of Nautilus: a surviving example of early Paleoizoic cephalopod locomotor design. Can Jour Zool 68:806–814. doi: 10.1139/z90-116 CrossRefGoogle Scholar
  11. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nature Rev Neurosci 11:459–473. doi: 10.1038/nrn2867 CrossRefGoogle Scholar
  12. Cook R, Basil J (2013) Flexible spatial orientation and navigational strategies in chambered Nautilus. Ethology 119:77–85. doi: 10.1111/eth.12040 CrossRefGoogle Scholar
  13. Crook R, Basil J (2008) A biphasic memory curve in the chambered nautilus, Nautilus pompilius L. (Cephalopoda: Nautiloidea). J Exp Biol 211:1992–1998. doi: 10.1242/jeb.020370 CrossRefPubMedGoogle Scholar
  14. Crook RJ, Hanlon RT, Basil JA (2009) Memory of visual and topographical features suggests spatial learning in nautilus (Nautilus pompilius L.). J Comp Psychol 123:264. doi: 10.1037/a0015921 CrossRefPubMedGoogle Scholar
  15. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721CrossRefPubMedGoogle Scholar
  16. Di Cosmo A, Paolucci M, Di Cristo C (2004) N-Methyl-D-aspartate receptor-like immunoreactivity in the brain of Sepia and Octopus. J Comp Neurol 477:202–219. doi: 10.1002/cne.20242 CrossRefPubMedGoogle Scholar
  17. Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18. doi: 10.1159/000352057 CrossRefPubMedGoogle Scholar
  18. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802. doi: 10.1111/j.1460-9568.2008.06285.x PubMedCentralCrossRefPubMedGoogle Scholar
  19. Ghirardi M, Braha O, Hochner B, Montarolo PG, Kandel ER, Dale N (1992) Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 9:479–489. doi: 10.1016/0896-6273(92)90185-G CrossRefPubMedGoogle Scholar
  20. Giurfa M (2006) Associative learning: the instructive function of biogenic amines. Curr Biol 16:892. doi: 10.1016/j.cub.2006.09.021 CrossRefGoogle Scholar
  21. Glanzman DL (2010) Common mechanisms of synaptic plasticity in vertebrates and invertebrates. Curr Biol 20:31–36. doi: 10.1016/j.cub.2009.10.023 CrossRefGoogle Scholar
  22. Grasso FW, Basil JA (2009) The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behav Evol 74:231–245. doi: 10.1159/000258669 CrossRefPubMedGoogle Scholar
  23. Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Phil Trans R Soc Lond B 258:379–394CrossRefGoogle Scholar
  24. Greenwood S, Shomrat T, Hochner B (2009) The involvement octopamine in short- and long-term plasticity in the octopus vertical lobe. Program No. 890.12.2009 neuroscience meeting planner. Chicago, IL: Society for Neuroscience, (Online)Google Scholar
  25. Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, CambridgeGoogle Scholar
  26. Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:510–514. doi: 10.1016/j.cub.2012.05.039 CrossRefGoogle Scholar
  27. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275. doi: 10.1038/nrn1074 CrossRefPubMedGoogle Scholar
  28. Hochner B (2010) Functional and comparative assessments of the octopus learning and memory system. Front Biosci 2:764–771CrossRefGoogle Scholar
  29. Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892. doi: 10.1016/j.cub.2012.09.001 CrossRefGoogle Scholar
  30. Hochner B, Shomrat T (2013) The Neurophysiological Basis of Learning and Memory in Advanced Invertebrates. In: Menzel Randolf, Benjamin Paul R (eds) Invertebrate learning and memory. Academic Press, Düsseldorf, pp 303–317CrossRefGoogle Scholar
  31. Hochner B, Shomrat T (2014) The neurophysiological basis of learning and memory in an advanced invertebrate––the octopus. In: Darmaillacq A-S, Dickel L, Mather JA (eds) Cephalopods cognition. Cambridge University Press, CambridgeGoogle Scholar
  32. Hochner B, Klein M, Schacher S, Kandel ER (1986a) Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization. Proc Natl Acad Sci USA 83:8410–8414. doi: 10.1073/pnas.83.21.8410 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Hochner B, Klein M, Schacher S, Kandel ER (1986b) Additional component in the cellular mechanism of presynaptic facilitation contributes to behavioral dishabituation in Aplysia. Proc Natl Acad Sci USA 83:8794–8798PubMedCentralCrossRefPubMedGoogle Scholar
  34. Hochner B, Brown ER, Langella M, Shomrat T, Fiorito G (2003) A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90:3547–3554. doi: 10.1152/jn.00645.2003 CrossRefPubMedGoogle Scholar
  35. Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317CrossRefPubMedGoogle Scholar
  36. Kandel ER (1976) Cellular basis of behavior: an introduction to behavioral neurobiology. W. H, Freeman OxfordGoogle Scholar
  37. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038. doi: 10.1126/science.1067020 CrossRefPubMedGoogle Scholar
  38. Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ (2012) Principles of neural science, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  39. Kemenes I, Kemenes G, Andrew RJ, Benjamin PR, O’Shea M (2002) Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J Neurosci 22:1414–1425PubMedGoogle Scholar
  40. Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456. doi: 10.1038/nature10382 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Korshunova TA, Balaban PM (2014) Nitric oxide is necessary for long-term facilitation of synaptic responses and for development of context memory in terrestrial snails. Neuroscience 266:127–135. doi: 10.1016/j.neuroscience.2014.02.004 CrossRefPubMedGoogle Scholar
  42. Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. BioEssays 33:602–613. doi: 10.1002/bies.201100001 CrossRefPubMedGoogle Scholar
  43. Lima PA, Nardi G, Brown ER (2003) AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. Eur J Neurosci 17:507–516. doi: 10.1046/j.1460-9568.2003.02477.x CrossRefPubMedGoogle Scholar
  44. Lin XY, Glanzman DL (1994) Hebbian induction of long-term potentiation of Aplysia sensorimotor synapses: partial requirement for activation of an NMDA-related receptor. Proc Biol Sci 255:215–221. doi: 10.1098/rspb.1994.0031 CrossRefPubMedGoogle Scholar
  45. Lindgren AR, Giribet G, Nishiguchi MK (2004) A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20:454–486. doi: 10.1111/j.1096-0031.2004.00032.x CrossRefGoogle Scholar
  46. Maldonado H (1965) The positive and negative learning process in Octopus vulgaris Lamarck. Influence of the vertical and median superior frontal lobes. Z Vergl Physiol 51:185–203CrossRefGoogle Scholar
  47. Mauelshagen J, Sherff CM, Carew TJ (1998) Differential induction of long-term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. Learn Mem 5:246–256. doi: 10.1101/lm.5.3.246 PubMedCentralPubMedGoogle Scholar
  48. Menzel R, Benjamin P (2013) Invertebrate learning and memory. Academic Press, DüsseldorfGoogle Scholar
  49. Montarolo PG, Kandel ER, Schacher S (1988) Long-term heterosynaptic inhibition in Aplysia. Nature 333:171–174. doi: 10.1038/333171a0 CrossRefPubMedGoogle Scholar
  50. Moroz LL, Kohn AB (2011) Parallel evolution of Nitric oxide signaling: diversity of synthesis and memory pathways. Front Biosci (Landmark edition) 16:2008–2051CrossRefGoogle Scholar
  51. Nixon M, Young JZ (2003) The brain and lives of cephalopods. Oxford University Press, OxfordGoogle Scholar
  52. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307. doi: 10.1111/j.1469-185X.1972.tb00975.x CrossRefGoogle Scholar
  53. Padamsey Z, Emptage N (2014) Two sides to long-term potentiation: a view towards reconciliation. Phil Trans R Soc Lond B Biol Sci 369:20130154. doi: 10.1098/rstb.2013.0154 CrossRefGoogle Scholar
  54. Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562. doi: 10.1146/annurev-ento-120811-153631 CrossRefPubMedGoogle Scholar
  55. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68. doi: 10.1016/S0301-0082(00)00044-7 CrossRefPubMedGoogle Scholar
  56. Robertson JD, Bonaventura J, Kohm AP (1994) Nitric oxide is required for tactile learning in Octopus vulgaris. Proc Biol Sci 256:269–273. doi: 10.1098/rspb.1994.0080 CrossRefPubMedGoogle Scholar
  57. Robertson JD, Bonaventura J, Kohm A, Hiscat M (1996) Nitric oxide is necessary for visual learning in Octopus vulgaris. Proc Biol Sci 263:1739–1743. doi: 10.1098/rspb.1996.0254 CrossRefPubMedGoogle Scholar
  58. Sanders GD (1975) The Cephalopods. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning, vol 3 cephalopods and echinoderms plenum press, New York, pp 139–145Google Scholar
  59. Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24. doi: 10.1186/1744-9081-6-24 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523:1297–1317. doi: 10.1002/cne.23755 CrossRefPubMedGoogle Scholar
  61. Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342. doi: 10.1016/j.cub.2008.01.056 CrossRefPubMedGoogle Scholar
  62. Shomrat T, Feinstein N, Klein M, Hochner B (2010) Serotonin is a facilitatory neuromodulator of synaptic transmission and “reinforces” long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 169:52–64. doi: 10.1016/j.neuroscience.2010.04.050 CrossRefPubMedGoogle Scholar
  63. Shomrat T, Graindorge N, Bellanger C, Fiorito G, Loewenstein Y, Hochner B (2011) Alternative sites of synaptic plasticity in two homologous fan-out fan-in learning and memory networks. Curr Biol 21:1773–1782. doi: 10.1016/j.cub.2011.09.011 CrossRefPubMedGoogle Scholar
  64. Smith SA, Wilson NG, Goetz FE (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367. doi: 10.1038/nature10526 CrossRefPubMedGoogle Scholar
  65. Stöger I, Sigwart JD, Kano Y, Knebelsberger T, Marshall BA, Schwabe E, Schrödl M (2013) The continuing debate on deep molluscan phylogeny: evidence for serialia (mollusca, monoplacophora + polyplacophora). Biomed Res Int 2013:407072. doi: 10.1155/2013/407072 PubMedCentralCrossRefPubMedGoogle Scholar
  66. Strugnell J, Norman M, Jackson J, Drummond AJ, Cooper A (2005) Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol Phylogenet Evol 37:426–441. doi: 10.1016/j.ympev.2005.03.020 CrossRefPubMedGoogle Scholar
  67. Strugnell J, Jackson J, Drummond AJ, Cooper A (2006) Divergence time estimates for major cephalopod groups: evidence from multiple genes. Cladistics 22:89–96. doi: 10.1111/j.1096-0031.2006.00086.x CrossRefGoogle Scholar
  68. Susswein AJ, Chiel HJ (2012) Nitric oxide as a regulator of behavior: new ideas from Aplysia feeding. Prog Neurobiol 97:304–317. doi: 10.1016/j.pneurobio.2012.03.004 CrossRefPubMedGoogle Scholar
  69. Sutton MA, Ide J, Masters SE, Carew TJ (2002) Interaction between amount and pattern of training in the induction of intermediate- and long-term memory for sensitization in Aplysia. Learn Mem 9:29–40. doi: 10.1101/lm.44802 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Turchetti-Maia A, Shomrat T, Hochner B (2014) Nitric oxide synthase is involved in maintenance but not in induction of activity-dependent LTP in the vertical lobe of the octopus. Program No. 561.04.2014 neuroscience meeting planner. Washington, DC: Society for Neuroscience (Online)Google Scholar
  71. Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227. doi: 10.1016/s0166-2236(98)01341-1 CrossRefPubMedGoogle Scholar
  72. Vapnik VN (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  73. Vehovszky Á, Szabó H, Elliott CJ (2004) Octopamine-containing (OC) interneurons enhance central pattern generator activity in sucrose-induced feeding in the snail Lymnaea. J Comp Physiol A 190:837–846. doi: 10.1007/s00359-004-0539-y CrossRefGoogle Scholar
  74. Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329. doi: 10.1016/j.conb.2013.01.005 CrossRefPubMedGoogle Scholar
  75. Wentzell MM, Martínez-Rubio C, Miller MW, Murphy AD (2009) Comparative neurobiology of feeding in the opisthobranch sea slug, aplysia, and the pulmonate snail, helisoma: evolutionary considerations. Brain Behav Evol 74:219–230. doi: 10.1159/000258668 PubMedCentralCrossRefPubMedGoogle Scholar
  76. Wright WG (1998) Evolution of nonassociative learning: behavioral analysis of a phylogenetic lesion. Neurobiol Learn Mem 69:326–327. doi: 10.1006/nlme.1998.3829 CrossRefPubMedGoogle Scholar
  77. Wright WG, Kirschman D, Rozen D, Maynard B (1996) Phylogenetic analysis of learning-related neuromodulation in molluscan mechanosensory neurons. Evolution 50:2248–2263. doi: 10.2307/2410695 CrossRefGoogle Scholar
  78. Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nature Neurosci 2:625–633. doi: 10.1038/10180 PubMedCentralCrossRefPubMedGoogle Scholar
  79. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, OxfordGoogle Scholar
  80. Young JZ (1979) The nervous system of Loligo: V. The vertical lobe complex. Phil Trans R Soc Lond B Biol Sci 285:311–354. doi: 10.1098/rstb.1979.0008 CrossRefGoogle Scholar
  81. Young J (1988) Evolution of the cephalopod brain. In: Clarke MR, Trueman ER (eds) The Mollusca vol. 12 Paleontology and Neontology of Cephalopods. Elsevier, Amsterdam. pp 215–228Google Scholar
  82. Young JZ (1991) Computation in the learning-system of cephalopods. Biol Bull 180:200–208CrossRefGoogle Scholar
  83. Young JZ (1995) Emerging ideas on memory in multiple matrices and with cyclic re-excitation. In: Elsner N, Menzel R, Thieme G (eds) Learning and Memory. vol 1. Proceed 23rd Göttingen Neurobiology Conf. Stuttgart, New York. pp 61–82Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. Shomrat
    • 1
    • 2
  • A. L. Turchetti-Maia
    • 1
  • N. Stern-Mentch
    • 1
    • 2
  • J. A. Basil
    • 3
  • B. Hochner
    • 1
  1. 1.Department of Neurobiology, Silberman Institute of Life SciencesThe Hebrew UniversityJerusalemIsrael
  2. 2.School of Marine SciencesRuppin Academic CenterMichmoretIsrael
  3. 3.Department of Ecology, Evolution and BehaviorBrooklyn CollegeBrooklynUSA

Personalised recommendations