Advertisement

Journal of Comparative Physiology A

, Volume 201, Issue 9, pp 895–909 | Cite as

Current techniques for high-resolution mapping of behavioral circuits in Drosophila

  • Lovesha Sivanantharajah
  • Bing Zhang
Review

Abstract

Understanding behavior requires unraveling the mysteries of neurons, glia, and their extensive connectivity. Drosophila has emerged as an excellent organism for studying the neural basis of behavior. This can be largely attributed to the extensive effort of the fly community to develop numerous sophisticated genetic tools for visualizing, mapping, and manipulating behavioral circuits. Here, we attempt to highlight some of the new reagents, techniques and approaches available for dissecting behavioral circuits in Drosophila. We focus on detailing intersectional strategies such as the Flippase-induced intersectional Gal80/Gal4 repression (FINGR), because of the tremendous potential they possess for mapping the minimal number of cells required for a particular behavior. The logic and strategies outlined in this review should have broad applications for other genetic model organisms.

Keywords

Drosophila Behavior Circuit mapping Intersection FINGR 

Abbreviations

CaMPARI

Calcium-modulated photoactivatable ratiometric integrator

ChR

Channelrhodopsin

CNO

Clozapine-N-oxide

DREADDs

Designer receptors exclusively activated by designer drugs

ET

Enhancer-trap

FLP

Flippase

FRT

Flippase recognition target

FINGR

Flippase-induced intersectional Gal80/Gal4 repression

FlyMAD

Fly mind-altering device

GMARET

Gal4-based mosaic-inducible and reporter-exchangeable enhancer-trap

GRASP

GFP reconstitution across synaptic partners

HRP

Horseradish peroxidase

InSITE

Integrase swappable in vivo targeting element

MARCM

Mosaic analysis with a repressible cell marker

STaR

Synaptic tagging with recombination

TNT

Tetanus toxin

UAS

Upstream activation sequence

XFP

X-fluorescent protein

Notes

Acknowledgments

We thank our colleagues for freely sharing their reagents, fruitful exchanges of ideas, and their high enthusiasm for mapping brain circuits. Due to space constraints, we apologize to those whose interesting work we could not cite in this review. Bing Zhang specifically thanks Rudolf Bohm, Will Welch, Lindsey Goodnight, Lea Henry, Hong Bao and other members of his lab for their important contributions to the initial development of the FINGR method and establishment of the ET-FLPx2 stocks, and thanks his current lab members for ongoing efforts in circuit mapping. We thank Richard Daniels and Gentry Decker for helpful comments on the manuscript. We are grateful for the institutional support from both the University of Oklahoma and the University of Missouri and for grant support from the National Science Foundation (NSF) (IOS-1025556; DBI-1126578; IOS-1354609) and the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) (RO1-NS060878). All procedures performed in studies of animals were in accordance with ethical standards of the institution or practice at which the work was conducted.

References

  1. Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7:1850–1866. doi: 10.1021/nn4012847 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. PNAS 104:5163–5168. doi: 10.1073/pnas.0700293104 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Awasaki T, Lai SL, Ito K, Lee T (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28:13742–13753. doi: 10.1523/JNEUROSCI.4844-08.2008 PubMedCrossRefGoogle Scholar
  4. Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M (2001) Altered electrical properties in Drosophila neurons developing without synaptic transmission. J Neurosci 21:1523–1531PubMedGoogle Scholar
  5. Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, Axel R, Lee KJ (2008) The genetic design of signaling cascades to record receptor activation. PNAS 105:64–69. doi: 10.1073/pnas.0710487105 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barolo S, Castro B, Posakony JW (2004) New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. Biotechniques 36:436–442PubMedGoogle Scholar
  7. Bath DE, Stowers JR, Hormann D, Poehlmann A, Dickson BJ, Straw AD (2014) FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat Methods 11:756–762. doi: 10.1038/nmeth.2973 PubMedCrossRefGoogle Scholar
  8. Becnel J, Johnson O, Majeed ZR, Tran V, Yu B, Roth BL, Cooper RL, Kerut EK, Nichols CD (2013) DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly. Cell 4:1049–1059. doi: 10.1016/j.celrep.2013.08.003 Google Scholar
  9. Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Gene Dev 3:1288–1300PubMedCrossRefGoogle Scholar
  10. Bloor JW, Kiehart DP (2001) zipper nonmuscle myosin-II functions downstream of PS2 integrin in Drosophila myogenesis and is necessary for myofibril formation. Dev Biol 239:215–228. doi: 10.1006/dbio.2001.0452 PubMedCrossRefGoogle Scholar
  11. Bohm RA, Welcha WP, Goodnighta LK, Coxa LW, Henrya LG, Guntera TC, Bao H, Zhang B (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. PNAS 107:16378–16383. doi: 10.1073/pnas.1004669107 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Boulina M, Samarajeewa H, Baker JD, Kim MD, Chiba A (2013) Live imaging of multicolor-labeled cells in Drosophila. Development 140:1605–1613. doi: 10.1242/dev.088930 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi: 10.1038/nn1525 PubMedCrossRefGoogle Scholar
  14. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  15. Cachero S, Jefferis GS (2008) Drosophila olfaction: the end of stereotypy? Neuron 59:843–845. doi: 10.1016/j.neuron.2008.09.017 PubMedCrossRefGoogle Scholar
  16. Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913. doi: 10.1016/j.cell.2013.07.027 PubMedCrossRefGoogle Scholar
  17. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi: 10.1038/nature12354 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Chen Y, Akin O, Nern A, Tsui CY, Pecot MY, Zipursky SL (2014) Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron 81:280–293. doi: 10.1016/j.neuron.2013.12.021 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Chouhan AK, Ivannikov MV, Lu Z, Sugimori M, Llinas RR, Macleod GT (2012) Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity. J Neurosci 32:1233–1243. doi: 10.1523/JNEUROSCI.1301-11.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Clyne JD, Miesenbock G (2008) Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133:354–363. doi: 10.1016/j.cell.2008.01.050 PubMedCrossRefGoogle Scholar
  21. Daniels RW, Rossano AJ, Macleod GT, Ganetzky B (2014) Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS One 9:e100637. doi: 10.1371/journal.pone.0100637 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452:473–477. doi: 10.1038/nature06808 PubMedCrossRefGoogle Scholar
  23. Doherty J, Logan MA, Tasdemir OE, Freeman MR (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29:4768–4781. doi: 10.1523/JNEUROSCI.5951-08.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ (2011) Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332:1571–1576. doi: 10.1126/science.1202249 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Dutta D, Bloor JW, Ruiz-Gomez M, VijayRaghavan K, Kiehart DP (2002) Real-time imaging of morphogenetic movements in Drosophila using Gal4-UAS-driven expression of GFP fused to the actin-binding domain of moesin. Genesis 34:146–151. doi: 10.1002/gene.10113 PubMedCrossRefGoogle Scholar
  26. Estes PS, Ho GL, Narayanan R, Ramaswami M (2000) Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin–green fluorescent protein chimera in vivo. J Neurogenet 13:233–255PubMedCrossRefGoogle Scholar
  27. Fore TR, Zhang B (2013) Intersectional strategies for cell type specific expression and transsynaptic labeling. In: Dubnau J (ed) Behavioral genetics of the fly (Drosophila melanogaster). Cambridge University Press, Cambridge, pp 250–267Google Scholar
  28. Fore TR, Ojwang AA, Warner ML, Peng X, Bohm RA, Welch WP, Goodnight LK, Bao H, Zhang B (2011) Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS. J Vis Exp. doi: 10.3791/2649 PubMedCentralPubMedGoogle Scholar
  29. Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, Tadross MR, Patel R, Zlatic M, Kim DS, Ahrens MB, Jayaraman V, Looger LL, Schreiter ER (2015) Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347:755–760. doi: 10.1126/science.1260922 PubMedCrossRefGoogle Scholar
  30. Fouquet W, Owald D, Wichmann C, Mertel S, Depner H, Dyba M, Hallermann S, Kittel RJ, Eimer S, Sigrist SJ (2009) Maturation of active zone assembly by Drosophila Bruchpilot. J Cell Biol 186:129–145. doi: 10.1083/jcb.200812150 PubMedCentralPubMedGoogle Scholar
  31. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin CC, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237PubMedCentralPubMedCrossRefGoogle Scholar
  32. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509PubMedCrossRefGoogle Scholar
  33. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384. doi: 10.1016/j.neuron.2008.12.033 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Grueber WB, Ye B, Yang CH, Younger S, Borden K, Jan LY, Jan YN (2007) Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development 134:55–64PubMedCrossRefGoogle Scholar
  35. Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266. doi: 10.1038/nmeth.1567 PubMedCrossRefGoogle Scholar
  36. Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259. doi: 10.1038/nmeth.1566 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Han DD, Stein D, Stevens LM (2000) Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127:573–583PubMedGoogle Scholar
  38. Han C, Jan LY, Jan Y-N (2011) Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. PNAS 108:9673–9678. doi: 10.1073/pnas.1106386108 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Heisenberg M, Heusipp M, Wanke C (1995) Structural plasticity in the Drosophila brain. J Neurosci 15:1951–1960PubMedGoogle Scholar
  40. Hidalgo A, Urban J, Brand AH (1995) Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS. Development 121:3703–3712PubMedGoogle Scholar
  41. Huang P, Sahai-Hernandez P, Bohm RA, Welch WP, Zhang B, Nystul T (2014) Enhancer-trap flippase lines for clonal analysis in the Drosophila ovary. G3 4:1693–1699. doi: 10.1534/g3.114.010710 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Inagaki HK, Ben-Taboude de-Leon S, Wong AM, Jagadish S, Ishimoto H, Barnea G, Kitamoto T, Axel R, Anderson DJ (2012) Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148:583–595. doi: 10.1016/j.cell.2011.12.022 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325–332. doi: 10.1038/nmeth.2765 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ito K, Sass H, Urban J, Hofbauer A, Schneuwly S (1997) GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system. Cell Tissue Res 290:1–10PubMedCrossRefGoogle Scholar
  45. Jagadish S, Barnea G, Clandinin TR, Axel R (2014) Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace. Neuron 83:630–644. doi: 10.1016/j.neuron.2014.06.025 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N, Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, Enos A, Hulamm P, Lam SC, Li HH, Laverty TR, Long F, Qu L, Murphy SD, Rokicki K, Safford T, Shaw K, Simpson JH, Sowell A, Tae S, Yu Y, Zugates CT (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell 2:991–1001. doi: 10.1016/j.celrep.2012.09.011 Google Scholar
  47. Jordan-Alvarez S, Fouquet W, Sigrist SJ, Acebes A (2012) Presynaptic PI3 K activity triggers the formation of glutamate receptors at neuromuscular terminals of Drosophila. J Cell Sci 125:3621–3629. doi: 10.1242/jcs.102806 PubMedCrossRefGoogle Scholar
  48. Kanca O, Caussinus E, Denes AS, Percival-Smith A, Affolter M (2014) Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development. Development 141:472–480. doi: 10.1242/dev.102913 PubMedCrossRefGoogle Scholar
  49. Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186. doi: 10.1016/j.cell.2014.03.001 PubMedCrossRefGoogle Scholar
  50. Keene AC, Masek P (2012) Optogenetic induction of aversive taste memory. Neuroscience 222:173–180. doi: 10.1016/j.neuroscience.2012.07.028 PubMedCrossRefGoogle Scholar
  51. Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S (2004) Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44:521–533. doi: 10.1016/j.neuron.2004.10.006 PubMedCrossRefGoogle Scholar
  52. Kim YJ, Bao H, Bonanno L, Zhang B, Serpe M (2012) Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Genes Dev 26:974–987. doi: 10.1101/gad.185165.111 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47:81–92PubMedCrossRefGoogle Scholar
  54. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. doi: 10.1038/nmeth.2836 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Koh YH, Popova E, Thomas U, Griffith LC, Budnik V (1999) Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 98:353–363PubMedPubMedCentralCrossRefGoogle Scholar
  56. Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V (2012) Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 287:16820–16834. doi: 10.1074/jbc.M112.342667 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Kottler B, Bao H, Zalucki O, Imlach W, Troup M, van Alphen B, Paulk A, Zhang B, van Swinderen B (2013) A sleep/wake circuit controls isoflurane sensitivity in Drosophila. Curr Biol 23:594–598. doi: 10.1016/j.cub.2013.02.021 PubMedCrossRefGoogle Scholar
  58. Lagow RD, Bao H, Cohen EN, Daniels RW, Zuzek A, Williams WH, Macleod GT, Sutton RB, Zhang B (2007) Modification of a hydrophobic layer by a point mutation in syntaxin 1A regulates the rate of synaptic vesicle fusion. PLoS Biol 5:e72. doi: 10.1371/journal.pbio.0050072 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709PubMedCrossRefGoogle Scholar
  60. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  61. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254PubMedCrossRefGoogle Scholar
  62. Leiss F, Koper E, Hein I, Fouquet W, Lindner J, Sigrist S, Tavosanis G (2009) Characterization of dendritic spines in the Drosophila central nervous system. Dev Neurobiol 69:221–234. doi: 10.1002/dneu.20699 PubMedCrossRefGoogle Scholar
  63. Lieber T, Kidd S, Struhl G (2011) DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69:468–481PubMedCentralPubMedCrossRefGoogle Scholar
  64. Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152. doi: 10.1016/j.cell.2005.02.004 PubMedCrossRefGoogle Scholar
  65. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436. doi: 10.1016/j.neuron.2006.08.028 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660. doi: 10.1016/j.neuron.2008.01.002 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knöpfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85:942–958. doi: 10.1016/j.neuron.2015.02.022 PubMedCrossRefGoogle Scholar
  68. Marella S, Mann K, Scott K (2012) Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73:941–950. doi: 10.1016/j.neuron.2011.12.032 PubMedCentralPubMedCrossRefGoogle Scholar
  69. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768. doi: 10.1126/science.1089035 PubMedCrossRefGoogle Scholar
  70. Meinertzhagen IA, Pyza E (1999) Neurotransmitter regulation of circadian structural changes in the fly’s visual system. Microsc Res Techniq 45:96–105. doi: 10.1002/(SICI)1097-0029(19990415)45:2<96:AID-JEMT4>3.0.CO;2-L CrossRefGoogle Scholar
  71. Melom JE, Littleton JT (2013) Mutation of a NCKX eliminates glial microdomain calcium oscillations and enhances seizure susceptibility. J Neurosci 33:1169–1178. doi: 10.1523/JNEUROSCI.3920-12.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93:1183–1193PubMedCrossRefGoogle Scholar
  73. Nicolai LJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M, Annaert W, Hassan BA (2010) Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. PNAS 107:20553–20558. doi: 10.1073/pnas.1010198107 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109:485–495PubMedCrossRefGoogle Scholar
  75. Nitabach MN, Wu Y, Sheeba V, Lemon WC, Strumbos J, Zelensky PK, White BH, Holmes TC (2006) Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J Neurosci 26:479–489. doi: 10.1523/JNEUROSCI.3915-05.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  76. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. PNAS 84:9123–9127PubMedCentralPubMedCrossRefGoogle Scholar
  77. Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. PNAS 98:12596–12601PubMedCentralPubMedCrossRefGoogle Scholar
  78. Paradis S, Sweeney ST, Davis GW (2001) Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30:737–749PubMedCrossRefGoogle Scholar
  79. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. doi: 10.1126/science.1074952 PubMedCrossRefGoogle Scholar
  80. Peabody NC, Pohl JB, Diao F, Vreede AP, Sandstrom DJ, Wang H, Zelensky PK, White BH (2009) Characterization of the decision network for wing expansion in Drosophila using targeted expression of the TRPM8 channel. J Neurosci 29:3343–3353. doi: 10.1523/JNEUROSCI.4241-08.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Petersen LK, Stowers RS (2011) A Gateway MultiSite recombination cloning toolkit. PLoS One 6:e24531. doi: 10.1371/journal.pone.0024531 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM (2008) Tools for neuroanatomy and neurogenetics in Drosophila. PNAS 105:9715–9720. doi: 10.1073/pnas.0803697105 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755. doi: 10.1534/genetics.110.119917 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by decapentaplegic. Development 124:271–278PubMedGoogle Scholar
  85. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068. doi: 10.1091/mbc.E05-06-0526 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426:559–563. doi: 10.1038/nature02184 PubMedCrossRefGoogle Scholar
  87. Potter CJ, Luo L (2011) Using the Q system in Drosophila melanogaster. Nat Protoc 6:1105–1120. doi: 10.1038/nprot.2011.347 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548. doi: 10.1016/j.cell.2010.02.025 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333:637–642. doi: 10.1126/science.1205295 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Rein K, Zockler M, Mader MT, Grubel C, Heisenberg M (2002) The Drosophila standard brain. Curr Biol 12:227–231PubMedCrossRefGoogle Scholar
  91. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607. doi: 10.1038/nmeth.1220 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Robinson IM, Ranjan R, Schwarz TL (2002) Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature 418:336–340. doi: 10.1038/nature00915 PubMedCrossRefGoogle Scholar
  93. Rolls MM, Satoh D, Clyne PJ, Henner AL, Uemura T, Doe CQ (2007) Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev 2:7. doi: 10.1186/1749-8104-2-7 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Roman G, Endo K, Zong L, Davis RL (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. PNAS 98:12602–12607PubMedCentralPubMedCrossRefGoogle Scholar
  95. Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19:419–424. doi: 10.1101/gad.1278205 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353PubMedCrossRefGoogle Scholar
  97. Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LB (2007) Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850. doi: 10.1016/j.neuron.2007.10.035 PubMedCrossRefGoogle Scholar
  98. Sanchez-Soriano N, Bottenberg W, Fiala A, Haessler U, Kerassoviti A, Knust E, Löhr R, Prokop A (2005) Are dendrites in Drosophila homologous to vertebrate dendrites? Dev Biol 288:126–138. doi: 10.1016/j.ydbio.2005.09.026 PubMedCrossRefGoogle Scholar
  99. Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 6:e20360. doi: 10.1371/journal.pone.0020360 PubMedCentralPubMedCrossRefGoogle Scholar
  100. Schroll C, Riemensperger T, Bucher D, Ehmer J, Völler T, Erbguth K, Gerber B, Hendel T, Nagel G, Buchner E, Fiala A (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol 16:1741–1747. doi: 10.1016/j.cub.2006.07.023 PubMedCrossRefGoogle Scholar
  101. Sepp KJ, Schulte J, Auld VJ (2000) Developmental dynamics of peripheral glia in Drosophila melanogaster. Glia 30:122–133PubMedCrossRefGoogle Scholar
  102. Sepp KJ, Schulte J, Auld VJ (2001) Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev Biol 238:47–63. doi: 10.1006/dbio.2001.0411 PubMedCrossRefGoogle Scholar
  103. Shearin HK, Dvarishkis AR, Kozeluh CD, Stowers RS (2013) Expansion of the gateway multisite recombination cloning toolkit. PLoS One 8:e77724. doi: 10.1371/journal.pone.0077724 PubMedCentralPubMedCrossRefGoogle Scholar
  104. Shearin HK, Macdonald IS, Spector LP, Stowers RS (2014) Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196:951–960PubMedCentralPubMedCrossRefGoogle Scholar
  105. Simpson JH (2009) Mapping and manipulating neural circuits in the fly brain. Adv Genet 65:79–143. doi: 10.1016/S0065-2660(09)65003-3 PubMedCrossRefGoogle Scholar
  106. Speder P, Adam G, Noselli S (2006) Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature 440:803–807PubMedCrossRefGoogle Scholar
  107. Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347PubMedCrossRefGoogle Scholar
  108. Stockinger P, Kvitsiani D, Rotkopf S, Tirian L, Dickson BJ (2005) Neural circuitry that governs Drosophila male courtship behavior. Cell 121:795–807. doi: 10.1016/j.cell.2005.04.026 PubMedCrossRefGoogle Scholar
  109. Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C (2008) Organization and function of the blood-brain barrier in Drosophila. J Neurosci 28:587–597. doi: 10.1523/JNEUROSCI.4367-07.2008 PubMedCrossRefGoogle Scholar
  110. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72:527–540PubMedCrossRefGoogle Scholar
  111. Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351PubMedCrossRefGoogle Scholar
  112. Sweeney NT, Brenman JE, Jan YN, Gao FB (2006) The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr Biol 16:1006–1011. doi: 10.1016/j.cub.2006.03.067 PubMedCrossRefGoogle Scholar
  113. Ting CY, Gu S, Guttikonda S, Lin TY, White BH, Lee CH (2011) Focusing transgene expression in Drosophila by coupling Gal4 with a novel split-LexA expression system. Genetics 188:229–233. doi: 10.1534/genetics.110.126193 PubMedCentralPubMedCrossRefGoogle Scholar
  114. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266. doi: 10.1038/nrn3171 PubMedCrossRefGoogle Scholar
  115. Wen H, Andrejka L, Ashton J, Karess R, Lipsick JS (2008) Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev 22:601–614. doi: 10.1101/gad.1626308 PubMedCentralPubMedCrossRefGoogle Scholar
  116. White BH, Peabody NC (2009) Neurotrapping: cellular screens to identify the neural substrates of behavior in Drosophila. Front Mol Neurosci 2:20. doi: 10.3389/neuro.02.020.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  117. White BH, Osterwalder TP, Yoon KS, Joiner WJ, Whim MD, Kaczmarek LK, Keshishian H (2001) Targeted attenuation of electrical activity in Drosophila using a genetically modified K(+) channel. Neuron 31:699–711PubMedCrossRefGoogle Scholar
  118. Williamson WR, Hiesinger PR (2010) On the role of v-ATPase V0a1-dependent degradation in Alzheimer disease. Commun Integr Biol 3:604–607. doi: 10.4161/cib.3.6.13364 PubMedCentralPubMedCrossRefGoogle Scholar
  119. Wing JP, Zhou L, Schwartz LM, Nambu JR (1998) Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 5:930–939PubMedCrossRefGoogle Scholar
  120. Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241. doi: 10.1016/S0092-8674(02)00707-9 PubMedCrossRefGoogle Scholar
  121. Worley MI, Setiawan L, Hariharan IK (2013) TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140:3275–3284. doi: 10.1242/dev.096057 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237PubMedGoogle Scholar
  123. Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. PNAS 107:16166–16171. doi: 10.1073/pnas.1005957107 PubMedCentralPubMedCrossRefGoogle Scholar
  124. Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. PNAS 92:7036–7040PubMedCentralPubMedCrossRefGoogle Scholar
  125. Yu JY, Kanai MI, Demir E, Jefferis GS, Dickson BJ (2010) Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr Biol 20:1602–1614. doi: 10.1016/j.cub.2010.08.025 PubMedCrossRefGoogle Scholar
  126. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. PNAS 100:1352–1357. doi: 10.1073/pnas.242738899 PubMedCentralPubMedCrossRefGoogle Scholar
  127. Zhang J, Schulze KL, Hiesinger PR, Suyama K, Wang S, Fish M, Acar M, Hoskins RA, Bellen HJ, Scott MP (2007) Thirty-one flavors of Drosophila rab proteins. Genetics 176:1307–1322. doi: 10.1534/genetics.106.066761 PubMedCentralPubMedCrossRefGoogle Scholar
  128. Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger SH, Zimmerman S, Jan LY, Jan YN (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10:1172–1180. doi: 10.1038/ncb1777 PubMedCentralPubMedCrossRefGoogle Scholar
  129. Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR (1997) Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. PNAS 94:5131–5136PubMedCentralPubMedCrossRefGoogle Scholar
  130. Zhou S, Lo WC, Suhalim JL, Digman MA, Gratton E, Nie Q, Lander AD (2012) Free extracellular diffusion creates the Dpp morphogen gradient of the Drosophila wing disc. Curr Biol 22:668–675. doi: 10.1016/j.cub.2012.02.065 PubMedCentralPubMedCrossRefGoogle Scholar
  131. Zito K, Parnas D, Fetter RD, Isacoff EY, Goodman CS (1999) Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22:719–729PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Biological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations