Journal of Comparative Physiology A

, Volume 201, Issue 7, pp 657–666 | Cite as

Unexpected dynamic up-tuning of auditory organs in day-flying moths

  • Emanuel C. MoraEmail author
  • Ariadna Cobo-Cuan
  • Frank Macías-Escrivá
  • Manfred Kössl
Original Paper


In certain nocturnal moth species the frequency range of best hearing shifts to higher frequencies during repeated sound stimulation. This could provide the moths with a mechanism to better detect approaching echolocating bats. However, such a dynamic up-tuning would be of little value for day-flying moths that use intra-specific acoustic communication. Here we examined if the ears of day-flying moths provide stable tuning during longer sound stimulation. Contrary to our expectations, dynamic up-tuning was found in the ear of the day-flying species Urania boisduvalii and Empyreuma pugione. Audiograms were measured with distortion-product otoacoustic emissions (DPOAEs). The level of the dominant distortion product (i.e. 2f1–f2) varied as a function of time by as much as 45 dB during ongoing acoustic stimulation, showing a systematic decrease at low frequencies and an increase at high frequencies. As a consequence, within about 2 s of acoustic stimulation, the DPOAEs audiogram shifted from low to high frequencies. Despite the up-tuning, the range of best audition still fell within the frequency band of the species-specific communication signals, suggesting that intra-specific communication should not be affected adversely. Up-tuning could be an ancestral condition in moth ears that in day-flying moths does not underlie larger selection pressure.


Audiogram DPOAEs Dynamic tuning Moths 



Distortion products


Distortion-product otoacoustic emissions


Fast Fourier transform


Laser Doppler vibrometry


Sound pressure level



We thank students at Havana University for collecting animals in the field. We thank the three anonymous reviewers for their helpful comments. This work was supported by the Institute Partnership Stipendium from the Alexander von Humboldt Foundation to the Research Groups of ECM and MK. Capture, holding and experimental procedures used in this study were approved by the animal care committees of the University of Frankfurt and University of Havana.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (MPG 6037 kb)


  1. Adams WB (1972) Mechanical tuning of the acoustic receptor of Prodenia eridania (Cramer) (Noctuidae). J Exp Biol 57:297–304Google Scholar
  2. Asi NS, Fullard JH, Whitehead S, Dawson JW (2009) No neural evidence for dynamic auditory tuning of the A1 receptor in the ear of the noctuid moth, Noctua pronuba. J Comp Physiol A 195:955–960. doi: 10.1007/s00359-009-0471-2 CrossRefGoogle Scholar
  3. Barro A, Vater M, Pérez M, Coro F (2009) Surface structure of sound emission organs in Urania moths. In: Gorb SN (ed) Functional surfaces in biology. Springer, pp 189–199Google Scholar
  4. Bergevin C, Freeman DM, Saunders JC, Shera CA (2008) Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms. J Comp Physiol A 194:665–683CrossRefGoogle Scholar
  5. Boyev KP, Liberman MC, Brown MC (2002) Effects of anesthesia on efferent-mediated adaptation of the DPOAE. J Acoust Soc Am 3:362–373. doi: 10.1007/s101620020044 Google Scholar
  6. Conner WE (1999) ‘Un chant d’appel amoureux’: acoustic communication in moths. J Exp Biol 202:1711–1723PubMedGoogle Scholar
  7. Conner WE, Corcoran AJ (2012) Sound strategies: the 65-million-year-old battle between bats and insects. Ann Rev Entomol 57:21–39. doi: 10.1146/annurev-ento-121510-133537 CrossRefGoogle Scholar
  8. Coro F (1986) El órgano timpánico de Urania boisduvalii (Lepidoptera: Uraniidae). Cien Biol 15:3–17Google Scholar
  9. Coro F, Kössl M (1998) Distortion-product otoacoustic emissions from the tympanic organ in two noctuoid moths. J Comp Physiol A 183:525–531. doi: 10.1007/s003590050278 CrossRefGoogle Scholar
  10. Coro F, Kössl M (2001) Components of the 2f(1)–f(2) distortion-product otoacoustic emission in a moth. Hear Res 162:126–133PubMedCrossRefGoogle Scholar
  11. Fenton MB, Fullard JH (1979) Influence of moth hearing on bat echolocation strategies. J Comp Physiol A 132:77–86CrossRefGoogle Scholar
  12. Fernández Y, Pérez M, Mora EC (2013) Is accoustic communication essential in the mating behavior of Empyreuma pugione (Erebidae: Arctiinae)? Revista Cubana de Ciencias Biológicas 2:32–37Google Scholar
  13. Fournier JP, Dawson JW, Mikhail A, Yack JE (2013) If a bird flies in the forest, does an insect hear it? Biol Lett 9:20130319. doi: 10.1098/rsbl.2013.0319 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fullard JH (1988) The tuning of moth ears. Experientia 44:423–428CrossRefGoogle Scholar
  15. Fullard JH (1994) Auditory changes in noctuid moths endemic to a bat-free habitat. J Evol Biol 7:435–445CrossRefGoogle Scholar
  16. Fullard JH (1998) The sensory coevolution of moths and bats. In: Hoy R, Popper A, Fay R (eds) Comparative hearing: insects. Springer-Verlag, New York, pp 279–326CrossRefGoogle Scholar
  17. Fullard JH (2006) Evolution of hearing in moths: the ears of Oenosandra boisduvalii (Noctuoidea: Oenosandridae). Aust J Zool 54:51–56. doi: 10.1071/Zo05066 CrossRefGoogle Scholar
  18. Fullard JH, Dawson JW (1999) Why do diurnal moths have ears? Naturwissenschaften 86:276–279CrossRefGoogle Scholar
  19. Fullard JH, Napoleone N (2001) Diel flight periodicity and the evolution of auditory defences in the Macrolepidoptera. Anim Behav 62:349–368. doi: 10.1006/anbe.2001.1753 CrossRefGoogle Scholar
  20. Fullard JH, Dawson JW, Otero LD, Surlykke A (1997) Bat-deafness in day-flying moths (Lepidoptera, Notodontidae, Dioptinae). J Comp Physiol A 181:477–483PubMedCrossRefGoogle Scholar
  21. Fullard JH, Otero LD, Orellana A, Surlykke A (2000) Auditory sensitivity and diel flight activity in neotropical Lepidoptera. Ann Entomol Soc Am 93:956–965. doi:10.1603/0013-8746(2000)093[0956:ASADFA]2.0.Co;2Google Scholar
  22. Goerlitz HR, ter Hofstede HM, Zeale MRK, Jones G, Holderied MW (2010) An aerial-hawking bat uses stealth echolocation to counter moth hearing. Curr Biol 20:1568–1572. doi: 10.1016/j.cub.2010.08.057 PubMedCrossRefGoogle Scholar
  23. Halsey K, Skjonsberg A, Ulfendahl M, Dolan DF (2005) Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity. Hear Res 201:99–108. doi: 10.1016/j.heares.2004.09.010 PubMedCrossRefGoogle Scholar
  24. Jacobs DS, Ratcliffe JM, Fullard JH (2008) Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation. Behav Ecol 19:1333–1342. doi: 10.1093/beheco/arn071 CrossRefGoogle Scholar
  25. Kim DO, Dorn PA, Neely ST, Gorga MP (2001) Adaptation of distortion product otoacoustic emission in humans. J Acoust Soc Am 2:31–40. doi: 10.1007/s101620010066 Google Scholar
  26. Kössl M, Coro F (2006) L1, L2 maps of distortion-product otoacoustic emissions from a moth ear with only two auditory receptor neurons. J Acoust Soc Am 120:3822–3831PubMedCrossRefGoogle Scholar
  27. Kössl M, Coro F, Seyfarth EA, Nassig WA (2007) Otoacoustic emissions from insect ears having just one auditory neuron. J Comp Physiol A 193:909–915. doi: 10.1007/s00359-007-0244-8 CrossRefGoogle Scholar
  28. Kössl M, Mockel D, Weber M, Seyfarth EA (2008) Otoacoustic emissions from insect ears: evidence of active hearing? J Comp Physiol A 194:597–609. doi: 10.1007/s00359-008-0344-0 CrossRefGoogle Scholar
  29. Kujawa SG, Liberman MC (2001) Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig. J Acoust Soc Am 2:268–278. doi: 10.1007/s101620010047 Google Scholar
  30. Lees DC (1992) Foreleg stridulation in male Urania moths (Lepidoptera: Uraniidae). Zool J Linn Soc 106:163–170. doi: 10.1111/j.1096-3642.1992.tb01245.x CrossRefGoogle Scholar
  31. Liberman MC, Puria S, Guinan JJ (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1–f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584. doi: 10.1121/1.414956 PubMedCrossRefGoogle Scholar
  32. Luebke AE, Foster PK, Stagner BB (2002) A multifrequency method for determining cochlear efferent activity. J Acoust Soc Am 3:16–25. doi: 10.1007/s101620010089 Google Scholar
  33. Meinke DK, Stagner BB, Martin GK, Lonsbury-Martin BL (2005) Human efferent adaptation of DPOAEs in the L1, L2 space. Hear Res 208:89–100. doi: 10.1016/j.heares.2005.05.004 PubMedCrossRefGoogle Scholar
  34. Miller LA, Surlykke A (2001) How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. Bioscience 51:570–581CrossRefGoogle Scholar
  35. Möckel D, Seyfarth EA, Kössl M (2007) The generation of DPOAEs in the locust ear is contingent upon the sensory neurons. J Comp Physiol A 193:871–879. doi: 10.1007/s00359-007-0239-5 CrossRefGoogle Scholar
  36. Möckel D, Seyfarth EA, Kössl M (2011) Otoacoustic emissions in bushcricket ears: general characteristics and the influence of the neuroactive insecticide pymetrozine. J Comp Physiol A 197:193–202. doi: 10.1007/s00359-010-0599-0 CrossRefGoogle Scholar
  37. Möckel D, Nowotny M, Kössl M (2014) Mechanical basis of otoacoustic emissions in tympanal hearing organs. J Comp Physiol A 200:681–691CrossRefGoogle Scholar
  38. Mora EC, Macías S, Vater M, Coro F, Kössl M (2004) Specializations for aerial hawking in the echolocation system of Molossus molossus (Molossidae, Chiroptera). J Comp Physiol A 190:561–574CrossRefGoogle Scholar
  39. Mora EC, Cobo-Cuan A, Macias-Escriva F, Perez M, Nowotny M, Kössl M (2013) Mechanical tuning of the moth ear: distortion-product otoacoustic emissions and tympanal vibrations. J Exp Biol 216:3863–3872. doi: 10.1242/jeb.085902 PubMedCrossRefGoogle Scholar
  40. Nakano R et al (2008) Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales. Proc Natl Acad Sci USA 105:11812–11817. doi: 10.1073/pnas.0804056105 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Pérez Álvarez M, Barro A (2014) Functional characteristics of the tympanic organ of Urania boisduvalii (Lepidoptera: Geometroidea: Uraniidae) and its behavioral role. Revista Cubana de Ciencias Biológicas 3:81–94Google Scholar
  42. Rydell J, Jones G, Waters D (1995) Echolocating bats and hearing moths: who are the winners? Oikos 73:419–424CrossRefGoogle Scholar
  43. Sanderford M, Coro F, Conner W (1998) Courtship behavior in Empyreuma affinis Roths (Lepidoptera, Arctiidae, Ctenuchinae): acoustic signals and tympanic organ response. Naturwissenschaften 85:82–87CrossRefGoogle Scholar
  44. Schlenther D, Voss C, Kössl M (2014) Influence of ketamine–xylazine anaesthesia on cubic and quadratic high-frequency distortion-product otoacoustic emissions. JARO 15:695–705PubMedCrossRefGoogle Scholar
  45. Schnitzler H-U, Kalko EK (2001) Echolocation by insect-eating bats. Bioscience 51:557–569CrossRefGoogle Scholar
  46. StatSoft Inc. (2001) STATISTICA for Windows 6.0. Statsoft Inc., Tulsa, OklahomaGoogle Scholar
  47. Sun XM, Kim DO (1999) Adaptation of 2f1–2f2 distortion product otoacoustic emission in young-adult and old CBA and C57 mice. J Acoust Soc Am 105:3399–3409. doi: 10.1121/1.424668 PubMedCrossRefGoogle Scholar
  48. Surlykke A, Fullard JH (1989) Hearing of the Australian whistling moth, Hecatesia thyridion. Naturwissenschaften 76:132–134. doi: 10.1007/Bf00366610 CrossRefGoogle Scholar
  49. Surlykke A, Skals N, Rydell J, Svensson M (1998) Sonic hearing in a diurnal geometrid moth, Archiearis parthenias, temporally isolated from bats. Naturwissenschaften 85:36–37. doi: 10.1007/s001140050449 CrossRefGoogle Scholar
  50. Takanashi T, Nakano R, Surlykke A, Tatsuta H, Tabata J, Ishikawa Y, Skals N (2010) Variation in courtship ultrasounds of three Ostrinia moths with different sex pheromones. PloS One 5. doi: 10.1371/journal.pone.0013144
  51. Windmill JF, Jackson JC, Tuck EJ, Robert D (2006) Keeping up with bats: dynamic auditory tuning in a moth. Curr Biol 16:2418–2423. doi: 10.1016/j.cub.2006.09.066 PubMedCrossRefGoogle Scholar
  52. Yack JE, Fullard JH (2000) Ultrasonic hearing in nocturnal butterflies. Nature 403:265–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Emanuel C. Mora
    • 1
    Email author
  • Ariadna Cobo-Cuan
    • 1
  • Frank Macías-Escrivá
    • 1
  • Manfred Kössl
    • 2
  1. 1.Research Group in Bioacoustics and Neuroethology, Faculty of BiologyHavana UniversityHavanaCuba
  2. 2.Institut für Zellbiologie und NeurowissenschaftJ.W. Goethe Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations