Journal of Comparative Physiology A

, Volume 201, Issue 5, pp 427–440 | Cite as

Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye

  • Fabian Schmeling
  • Jennifer Tegtmeier
  • Michiyo Kinoshita
  • Uwe Homberg
Original Paper

Abstract

In many insect species, photoreceptors of a small dorsal rim area of the eye are specialized for sensitivity to the oscillation plane of polarized skylight and, thus, serve a role in sky compass orientation. To further understand peripheral mechanisms of polarized-light processing in the optic lobe, we have studied the projections of photoreceptors and their receptive fields in the main eye and dorsal rim area of the desert locust, a model system for polarization vision analysis. In both eye regions, one photoreceptor per ommatidium, R7, has a long visual fiber projecting through the lamina to the medulla. Axonal fibers from R7 receptors of the dorsal rim area have short side branches throughout the depth of the dorsal lamina and maintain retinotopic projections to the dorsal medulla following the first optic chiasma. Receptive fields of dorsal rim photoreceptors are considerably larger (average acceptance angle 33°) than those of the main eye (average acceptance angle 2.04°) and, taken together, cover almost the entire sky. The data challenge previous reports of two long visual fibers per ommatidium in the main eye of the locust and provide data for future analysis of peripheral networks underlying polarization opponency in the locust brain.

Keywords

Compound eye Dorsal rim area Receptive fields Photoreceptor projections Desert locust 

References

  1. Armett-Kibel C, Meinertzhagen IA (1985) The long visual fibers of the dragonfly optic lobe: their cells of origin and lamina connections. J Comp Neurol 242:459–474CrossRefPubMedGoogle Scholar
  2. Bech M, Homberg U, Pfeiffer K (2014) Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 24:2124–2129CrossRefPubMedGoogle Scholar
  3. Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128CrossRefPubMedGoogle Scholar
  4. Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH (2003) Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. J Comp Neurol 458:334–349CrossRefPubMedGoogle Scholar
  5. Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10CrossRefGoogle Scholar
  6. Burkhardt D, Streck P (1965) Das Sehfeld einzelner Sehzellen: Eine Richtigstellung. Z Vgl Physiol 51:151–152Google Scholar
  7. Buschbeck EK, Ehmer B, Hoy RR (2003) The unusual visual system of the Strepsiptera: external eye and neuropils. J Comp Physiol A 189:617–630CrossRefGoogle Scholar
  8. Dacke M, Nordström P, Scholtz C (2003) Twilight orientation to polarized light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol 206:1535–1543CrossRefPubMedGoogle Scholar
  9. el Jundi B, Homberg U (2010) Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J Insect Physiol 56:971–979CrossRefPubMedGoogle Scholar
  10. el Jundi B, Homberg U (2012) Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. J Neurophysiol 108:1695–1710CrossRefPubMedGoogle Scholar
  11. el Jundi B, Pfeiffer K, Homberg U (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS One 6:e27855CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fischbach KF, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475CrossRefGoogle Scholar
  13. Gebhardt S, Homberg U (2004) Immunocytochemistry of histamine in the brain of the locust Schistocerca gregaria. Cell Tissue Res 317:195–205CrossRefPubMedGoogle Scholar
  14. Greiner B, Ribi WA, Wcislo WT, Warrant EJ (2004) Neural organization in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 318:429–437CrossRefPubMedGoogle Scholar
  15. Hamanaka Y, Shibasaki H, Kinoshita M, Arikawa K (2013) Neurons innervating the lamina in the butterfly, Papilio xuthus. J Comp Physiol A 199:341–351CrossRefGoogle Scholar
  16. Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol A 161:201–213CrossRefPubMedGoogle Scholar
  17. Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706CrossRefPubMedGoogle Scholar
  18. Hardie RC, Franceschini N, Ribi W, Kirschfeld K (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J Comp Physiol A 145:139–152CrossRefGoogle Scholar
  19. Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478CrossRefPubMedGoogle Scholar
  20. Homberg U, el Jundi B (2013) Polarization vision in arthropods. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge, pp 1207–1217Google Scholar
  21. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim of the locust compound eye. Arthropod Struct Dev 30:271–280CrossRefPubMedGoogle Scholar
  22. Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346CrossRefPubMedGoogle Scholar
  23. Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the desert locust, Schistocerca gregaria. J Comp Neurol 462:415–430CrossRefPubMedGoogle Scholar
  24. Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc B 366:680–687CrossRefGoogle Scholar
  25. Horridge GA, Meinertzhagen IA (1970) The exact neural projection of the visual fields upon first and second ganglia of the insect eye. Z Vgl Physiol 66:369–378CrossRefGoogle Scholar
  26. Horváth G, Varjú D (2004) Polarized light in animal vision: Polarization patterns in nature. Springer, HeidelbergCrossRefGoogle Scholar
  27. Klagges BR, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165PubMedGoogle Scholar
  28. Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145CrossRefPubMedGoogle Scholar
  29. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J Comp Physiol A 141:19–30CrossRefGoogle Scholar
  30. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant Cataglyphis bicolor. J Comp Physiol A 158:1–7CrossRefGoogle Scholar
  31. Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437CrossRefGoogle Scholar
  32. Labhart T (1999) How polarization-sensitive interneurons of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neuron. J Exp Biol 202:757–770PubMedGoogle Scholar
  33. Labhart T, Meyer E (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379CrossRefPubMedGoogle Scholar
  34. Labhart T, Meyer E (2002) Neural mechanism in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12:707–714CrossRefPubMedGoogle Scholar
  35. Labhart T, Petzold J (1993) Processing of polarized light information in the visual system of crickets. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 158–169Google Scholar
  36. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular references to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296CrossRefGoogle Scholar
  37. Lillywhite PG (1978) Coupling between locust photoreceptors revealed by study of quantum bumps. J Comp Physiol A 125:13–27CrossRefGoogle Scholar
  38. Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68CrossRefGoogle Scholar
  39. Meyer EP (1984) Retrograde labeling of photoreceptors in different eye regions of the compound eye of bees and ants. J Neurocytol 13:825–836CrossRefPubMedGoogle Scholar
  40. Mouritsen H, Derbyshire R, Stalleicken J, Mouritsen OØ, Frost BJ, Norris DR (2013) An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc Natl Acad Sci 110:7348–7353CrossRefPubMedCentralPubMedGoogle Scholar
  41. Nässel DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136CrossRefPubMedGoogle Scholar
  42. Nowel MS, Shelton PMJ (1981) A Golgi-electron-microscopical study of the structure and developement of the lamina ganglionaris of the locust optic lobe. Cell Tissue Res 216:377–401CrossRefPubMedGoogle Scholar
  43. Oberhauser KS, Taylor OR, Reppert SM, Dingle H, Nail KR, Pyle RM, Stenoien C (2013) Are monarch butterflies true navigators? The jury is still out. Proc Natl Acad Sci 110:E3680CrossRefPubMedCentralPubMedGoogle Scholar
  44. Paulk AC, Dacks AM, Gronenberg W (2009) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456CrossRefPubMedGoogle Scholar
  45. Pollack I, Hofbauer A (1991) Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tissue Res 226:391–398CrossRefGoogle Scholar
  46. Reppert SM, Zhu H, White RH (2004) Polarized light helps monarch butterflies navigate. Curr Biol 14:155–158CrossRefPubMedGoogle Scholar
  47. Ribi WA (1975a) Golgi studies of the first optic ganglion of the ant, Cataglyphis bicolor. Cell Tissue Res 160:207–217CrossRefPubMedGoogle Scholar
  48. Ribi WA (1975b) The first optic ganglion of the bee. Cell Tissue Res 165:103–111CrossRefPubMedGoogle Scholar
  49. Ribi WA, Scheel M (1981) The second and third optic ganglia of the worker bee. Cell Tissue Res 221:17–43CrossRefPubMedGoogle Scholar
  50. Schmeling F, Wakakuwa M, Tegtmeier J, Kinoshita M, Bockhorst T, Arikawa K, Homberg U (2014) Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria. J Exp Biol 217:3557–3568CrossRefPubMedGoogle Scholar
  51. Shashar N, Sabbah S, Aharoni N (2005) Migratory locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 1:472–475CrossRefPubMedCentralPubMedGoogle Scholar
  52. Shaw SR (1967) Simultaneous recording from two cells in the locust retina. Z Vgl Physiol 55:183–194CrossRefGoogle Scholar
  53. Shaw SR (1969) Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vis Res 9:999–1029CrossRefPubMedGoogle Scholar
  54. Shimohigashi M, Tominaga Y (1991) Identification of UV, green and red receptors, and their projection to lamina in the cabbage butterfly, Pieris rapae. Cell Tissue Res 263:49–59CrossRefGoogle Scholar
  55. Simpson S, McCaffery A, Hägele BF (1999) A behavioural analysis of phase change in the desert locust. Biol Rev 74:461–480CrossRefGoogle Scholar
  56. Spaethe J, Briscoe AD (2005) Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J Exp Biol 208:2347–2361CrossRefPubMedGoogle Scholar
  57. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43CrossRefPubMedGoogle Scholar
  58. Stalleicken J, Labhart T, Mouritsen H (2006) Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A 192:321–331CrossRefGoogle Scholar
  59. Strausfeld NJ (1971) The organization of the insect visual system (light microscopy) - I. Projections and arrangements of neurons in the lamina ganglionaris of Diptera. Z Zellforsch 121:377–441CrossRefGoogle Scholar
  60. Takemura S-Y, Kinoshita M, Arikawa K (2005) Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus. J Comp Neurol 483:341–350CrossRefPubMedGoogle Scholar
  61. Takemura S-Y, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513CrossRefPubMedCentralPubMedGoogle Scholar
  62. von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Biene. Experientia 5:142–148CrossRefPubMedGoogle Scholar
  63. von Philipsborn A, Labhart T (1990) A behavioural study of polarization vision in the fly, Musca domestica. J Comp Physiol A 167:737–743CrossRefGoogle Scholar
  64. Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464–467CrossRefPubMedGoogle Scholar
  65. Wehner R (1982) Himmelsnavigation bei Insekten: Neurophysiologie und Verhalten. Neujahrsblatt Naturforsch Ges Zürich 184:1–132Google Scholar
  66. Wehner R, Labhart T (2006) Polarization vision. In: Warrant E, Nilsson D-E (eds) Invertebrate Vision. Cambridge University Press, Cambridge, pp 291–348Google Scholar
  67. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci 103:12575–12579CrossRefPubMedCentralPubMedGoogle Scholar
  68. Weir PT, Dickinson MH (2012) Flying Drosophila orient to sky polarization. Curr Biol 22:21–27CrossRefPubMedGoogle Scholar
  69. Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 321:387–403CrossRefPubMedGoogle Scholar
  70. Wernet MF, Desplan C (2004) Building a retinal mosaic: cell-fate decision in the fly eye. Trends Cell Biol 14:576–584CrossRefPubMedGoogle Scholar
  71. Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20CrossRefPubMedCentralPubMedGoogle Scholar
  72. White RH, Xu H, Münch TA, Bennett RR, Grable EA (2003) The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization. J Exp Biol 206:3337–3348CrossRefPubMedGoogle Scholar
  73. Williams DS (1983) Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts. J Comp Physiol 150:509–519CrossRefGoogle Scholar
  74. Wilson M, Garrard P, McGinness S (1978) The unit structure of the locust compound eye. Cell Tissue Res 195:205–226CrossRefPubMedGoogle Scholar
  75. Wolburg-Buchholz K (1979) The organization of the lamina ganglionaris of the hemipteran insects, Notonecta glauca, Corixa punctata and Gerris lacustris. Cell Tissue Res 197:39–59CrossRefPubMedGoogle Scholar
  76. Zufall F (1984) Physiologische und morphologische Charakterisierung der Retinulazellen im Komplexauge der Grillen (Gryllus bimaculatus). Diploma thesis, Freie Universität BerlinGoogle Scholar
  77. Zufall F, Schmitt M, Menzel R (1989) Spectral and polarized light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus). J Comp Physiol A 164:597–608CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fabian Schmeling
    • 1
  • Jennifer Tegtmeier
    • 1
  • Michiyo Kinoshita
    • 2
  • Uwe Homberg
    • 1
  1. 1.Faculty of Biology, Animal PhysiologyPhilipps University of MarburgMarburgGermany
  2. 2.Laboratory of NeuroethologySokendai (The Graduate University for Advanced Studies)HayamaJapan

Personalised recommendations