Journal of Comparative Physiology A

, Volume 201, Issue 6, pp 517–532 | Cite as

Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation

Original Paper

Abstract

Rüdiger Wehner’s work on insect orientation and navigation has influenced many scientists studying navigation, not only in ants and bees, but in other animals as well. We review the scientific legacy of six topics arising from Wehner’s work on navigation. The polarisation compass is a chapter with a lot of behavioural and neurobiological detail. It has influenced the study of polarisation vision in other systems, and led Wehner to formulate the concept of a matched filter. The matched filter has probably had earlier formulations, but Wehner’s paper on it has been much cited in studies on navigation and in other fields. The polarisation compass serves the task of path integration in insects. Work on path integration took off in the 1980s with work on desert ants and rodents. The use of terrestrial visual cues, landmarks or the panorama in view-based matching is another major theme of navigational research today. Search strategies were also well described in desert ants, and this line of research helped to launch theoretical and empirical developments in searching behaviour, now a lively area of research. Finally, robotic work has often drawn inspiration from work on insect navigation. We end with some discussion of current research directions.

Keywords

Polarisation compass Path integration Matched filter Panorama Search 

Notes

Acknowledgments

We wish to thank Tom Collett, Sibylle Wehner, and an anonymous reviewer for comments on this manuscript.

Conflict of interst

The authors declare that they have no conflicts of interest.

References

  1. Abbott A, Callaway E (2014) Prize for place cells: discoverers of brain’s navigation system get physiology Nobel. Nature 514:153Google Scholar
  2. Andel D, Wehner R (2004) Path integration in desert ants, Cataglyphis fortis: how to make a homing ant run away from home. Proc R Soc B 271:1485–1489PubMedCentralPubMedGoogle Scholar
  3. Avni R, Eilam D (2008) On the border: perimeter patrolling as a transitional exploratory phase in a diurnal rodent, the fat sand rat (Psammomys obesus). Anim Cogn 11:311–318PubMedGoogle Scholar
  4. Avni R, Zadicario P, Eilam D (2006) Exploration in a dark open field: a shift from directional to positional progression and a proposed model of acquiring spatial information. Behav Brain Res 171:313–323PubMedGoogle Scholar
  5. Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397PubMedGoogle Scholar
  6. Baddeley B, Graham P, Philippides A, Husbands P (2011) Holistic visual encoding of ant-like routes: navigation without waypoints. Adapt Behav 19:3–15Google Scholar
  7. Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comput Biol 8:e1002336PubMedCentralPubMedGoogle Scholar
  8. Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol 119:69–88PubMedCentralPubMedGoogle Scholar
  9. Bech M, Homberg U, Pfeiffer K (2014) Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 24:2124–2129PubMedGoogle Scholar
  10. Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z Vergl Physiol 41:1–25Google Scholar
  11. Benhamou S (2007) How many animals really do the Lévy walk? Ecol 88:1962–1969Google Scholar
  12. Bennett ATD (1993) Spatial memory in a food storing corvid. I. Near tall landmarks are primarily used. J Comp Physiol A 173:193–207Google Scholar
  13. Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vision Res 17:1019–1028PubMedGoogle Scholar
  14. Beugnon G, Lachaud J-P, Chagné P (2005) Use of long-term stored vector information in the neotropical ant Gigantiops destructor. J Insect Behav 18:415–432Google Scholar
  15. Buchanan M (2008) The mathematical mirror to animal nature. Nature 453:714–716PubMedGoogle Scholar
  16. Buehlmann C, Hansson BS, Knaden M (2012) Desert ants learn vibration and magnetic landmarks. PLoS One 7:e33117PubMedCentralPubMedGoogle Scholar
  17. Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853PubMedGoogle Scholar
  18. Burns LD (2013) A vision of our transport future. Nature 497:181–182PubMedGoogle Scholar
  19. Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540PubMedGoogle Scholar
  20. Cartwright BA, Collett TS (1979) How honeybees know their distance from a near-by visual landmark. J Exp Biol 82:367–372Google Scholar
  21. Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564Google Scholar
  22. Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151:521–543Google Scholar
  23. Cheng K (2012a) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Zentall TR, Wasserman EA (eds) The Oxford handbook of comparative cognition. Oxford University Press, Oxford, pp 347–365Google Scholar
  24. Cheng K (2012b) How to navigate without maps: the power of taxon-like navigation in ants. Comp Cogn Behav Rev 7:1–22Google Scholar
  25. Cheng K, Spetch ML (1998) Mechanisms of landmark use in mammals and birds. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 1–17Google Scholar
  26. Cheng K, Collett TS, Wehner R (1986) Honeybees learn the colours of landmarks. J Comp Physiol A 159:69–73Google Scholar
  27. Cheng K, Collett TS, Pickhard A, Wehner R (1987) The use of visual landmarks by honeybees: bees weight landmarks according to their distance from the goal. J Comp Physiol A 161:469–475Google Scholar
  28. Cheng K, Spetch ML, Kelly DM, Bingman VP (2006) Small-scale spatial cognition in pigeons. Behav Processes 72:115–127PubMedGoogle Scholar
  29. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133:625–637PubMedGoogle Scholar
  30. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Processes 80:261–268PubMedGoogle Scholar
  31. Cheng K, Middleton EJT, Wehner R (2012) Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J Exp Biol 215:3169–3174PubMedGoogle Scholar
  32. Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R (2014) Beginnings of a synthetic approach to desert ant navigation. Behav Processes 102:51–61PubMedGoogle Scholar
  33. Cheung A, Hiby L, Narendra A (2012) Ant navigation: fractional use of the home vector. PLoS One 7:e50451PubMedCentralPubMedGoogle Scholar
  34. Chittka L, Kunze J, Shipman C, Buchmann SL (1995) The significance of landmarks for path integration in homing honeybee foragers. Naturwissenschaften 82:341–343Google Scholar
  35. Christian KA, Morton SR (1992) Extreme thermophilia in a Central Australian ant, Melophorus bagoti. Physiol Zool 65:885–905Google Scholar
  36. Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci USA 107:11638–11643PubMedCentralPubMedGoogle Scholar
  37. Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932PubMedGoogle Scholar
  38. Collett TS, Collett M (2000) Path integration in insects. Curr Opin Neurobiol 10:757–762PubMedGoogle Scholar
  39. Collett TS, Land MF (1975) Visual spatial memory in a hoverfly. J Comp Physiol 100:59–84Google Scholar
  40. Collett TS, Fry S, Wehner R (1993) Sequence learning by honeybees. J Comp Physiol A 172:693–706Google Scholar
  41. Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272Google Scholar
  42. Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800PubMedGoogle Scholar
  43. Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ (2003) Insect orientation to polarized moonlight. Nature 424:33PubMedGoogle Scholar
  44. Dacke M, Byrne MJ, Scholtz CH, Warrant EJ (2004) Lunar orientation in a beetle. Proc R Soc B 271:361–365PubMedCentralPubMedGoogle Scholar
  45. Dacke M, Baird E, Byrne M, Scholtz CH, Warrant EJ (2013) Dung beetles use the Milky Way for orientation. Curr Biol 23:298–300PubMedGoogle Scholar
  46. Darwin C (1873) Origin of certain instincts. Nature 7:417–418Google Scholar
  47. de Jager M, Weissing FJ, Herman PMJ, Nolet BA, van de Koppel J (2011) Lévy walks evolve through interaction between movement and environmental complexity. Science 332:1551–1553PubMedGoogle Scholar
  48. de Jager M, Weissing FJ, Herman PMJ, Nolet BA, van de Koppel J (2012) Response to comment on “Lévy walks evolve through interaction between movement and environmental complexity”. Science 335:918-dGoogle Scholar
  49. Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160PubMedGoogle Scholar
  50. Dyer FC (1987) Memory and sun compensation by honey bees. J Comp Physiol A 160:621–633Google Scholar
  51. Dyer F (1996) Spatial memory and navigation by honeybees on the scale of the foraging range. J Exp Biol 199:147–154PubMedGoogle Scholar
  52. Edwards AM (2011) Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecol 92:1247–1257Google Scholar
  53. Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley EH, Viswanathan GM (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449:1044–1048PubMedGoogle Scholar
  54. el Jundi B, Pfeiffer K, Heinze S, Homberg U (2014) Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A 200:575–589Google Scholar
  55. Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82:38–40Google Scholar
  56. Esch HE, Zhang S, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411:581–583PubMedGoogle Scholar
  57. Etienne A (1980) The orientation of the Golden hamster to its nest-site after the elimination of various sensory cues. Experientia 36:1048–1050PubMedGoogle Scholar
  58. Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192PubMedGoogle Scholar
  59. Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209PubMedGoogle Scholar
  60. Franz MO, Mallot HA (2000) Biomimetic robot navigation. Robot Auton Syst 30:133–153Google Scholar
  61. Franz MO, Scholkopf B, Mallot HA, Bülthoff HH (1998) Learning view graphs for robot navigation. Auton Robot 5:111–125Google Scholar
  62. Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264PubMedGoogle Scholar
  63. Gallistel CR (1990) The organization of learning. MIT Press, CambridgeGoogle Scholar
  64. Gibson B, Wilks T (2008) The use of self-motion cues and landmarks by Clark’s nutcrackers (Nucifraga columbiana) during a small-scale search task. Anim Behav 76:1305–1317Google Scholar
  65. Glasauer S, Amorim MA, Vitte E, Berthoz A (1994) Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res 98:323–335PubMedGoogle Scholar
  66. Goddard SM, Forward RB (1991) The role of underwater polarized-light pattern, in sun compass navigation of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491Google Scholar
  67. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMedGoogle Scholar
  68. Görner P (1958) Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica (Cl.). Z Vergleich Physiol 41:111–153Google Scholar
  69. Gould-Beierle K, Kamil AC (1998) Use of landmarks in three species of food-storing corvids. Ethol 104:361–378Google Scholar
  70. Graham P, Cheng K (2009a) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937PubMedGoogle Scholar
  71. Graham P, Cheng K (2009b) Which portion of the natural panorama is used for view based navigation in the Australian desert ant? J Comp Physiol A 195:681–689Google Scholar
  72. Gross CG (2002) Genealogy of the “grandmother cell”. Neuroscientist 8:512–518PubMedGoogle Scholar
  73. Haferlach T, Wessnitzer J, Mangan M, Webb B (2007) Evolving a neural model of insect path integration. Adapt Behav 15:273–287Google Scholar
  74. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedGoogle Scholar
  75. Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497Google Scholar
  76. Hawryshyn CW (1992) Polarization vision in fish. Am Sci 80:164–175Google Scholar
  77. Helbig AJ (1990) Depolarization of natural skylight disrupts orientation of an avian nocturnal migrant. Experientia 46:755–758Google Scholar
  78. Hemmi JM, Zeil J (2003a) Burrow surveillance in fiddler crabs-I: description of behaviour. J Exp Biol 206:3935–3950PubMedGoogle Scholar
  79. Hemmi JM, Zeil J (2003b) Burrow surveillance in fiddler crabs-II: the sensory cues. J Exp Biol 206:3951–3961PubMedGoogle Scholar
  80. Hemmi JM, Zeil J (2003c) Robust judgement of inter-object distance by an arthropod. Nature 421:160–163PubMedGoogle Scholar
  81. Hills TT (2006) Animal foraging and the evolution of goal-directed cognition. Cogn Sci 30:3–41PubMedGoogle Scholar
  82. Hills TT (2011) The evolutionary origins of cognitive control. Topics Cogn Sci 3:231–237Google Scholar
  83. Hoffmann G (1983a) The random elements in the systematic search behavior of the desert isopod Hemilepistus reaumuri. Behav Ecol Sociobiol 13:81–92Google Scholar
  84. Hoffmann G (1983b) The search behavior of the desert isopod Hemilepistus reaumuri as compared with a systematic search. Behav Ecol Sociobiol 13:93–106Google Scholar
  85. Hoffmann G (1985a) The influence of landmarks on the systematic search behavior of the desert isopod Hemilepistus reaumuri I: role of the landmark made by the animal. Behav Ecol Sociobiol 17:325–334Google Scholar
  86. Hoffmann G (1985b) The influence of landmarks on the systematic search behavior of the desert isopod Hemilepistus reaumuri II problems with similar landmarks and their solution. Behav Ecol Sociobiol 17:335–348Google Scholar
  87. Hurvich LM, Jameson D (1957) An opponent-process theory of color vision. Psychol Rev 64:384–404PubMedGoogle Scholar
  88. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166PubMedGoogle Scholar
  89. Jakobi N (1997) Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt Behav 6:325–368Google Scholar
  90. Jansen VAA, Mashanova A, Petrovskii S (2012) Comment on “Lévy walks evolve through interaction between movement and environmental complexity”. Science 335:918-cGoogle Scholar
  91. Kamil AC, Jones JE (1997) Clark’s nutcrackers learn geometric relationships among landmarks. Nature 390:276–279Google Scholar
  92. Knaden M, Wehner R (2005) Nest mark orientation in desert ants Cataglyphis: what does it do to the path integrator? Anim Behav 70:1349–1354Google Scholar
  93. Knaden M, Tinaut A, Cerda X, Wehner S, Wehner R (2005) Phylogeny of three parapatric species of desert ants, Cataglyphis bicolor, C. viatica, and C. savignyi: a comparison of mitochondrial DNA, nuclear DNA, and morphological data. Zool 108:167–177Google Scholar
  94. Knaden M, Tinaut A, Stökl J, Wehner R (2012) Molecular phylogeny of the desert ant genus Cataglyphis (Hymenoptera: Formicidae). Myrmecol News 16:123–132Google Scholar
  95. Kohler M, Wehner R (2005) Idiosyncratic route memories in desert ants, Melophorus bagoti: how do they interact with path integration vectors? Neurobiol Learn Mem 83:1–12PubMedGoogle Scholar
  96. Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437Google Scholar
  97. Labhart T (1996) How polarization-sensitive interneurones of crickets perform at low degrees of polarization. J Exp Biol 199:1467–1475PubMedGoogle Scholar
  98. Lambrinos D, Maris M, Kobayashi H, Labhart T, Pfeifer R, Wehner R (1997) An autonomous agent navigating with a polarized light compass. Adapt Behav 6:131–161Google Scholar
  99. Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robot Auton Syst 30:39–64Google Scholar
  100. Lebhardt F, Ronacher B (2014) Interactions of the polarization and the sun compass in path integration of desert ants. J Comp Physiol A 200:711–720Google Scholar
  101. Legge ELG, Spetch ML, Cheng K (2010) Not using the obvious: desert ants, Melophorus bagoti, learn local vectors but not beacons in an arena. Anim Cogn 13:849–860PubMedGoogle Scholar
  102. Lent D, Graham P, Collett TS (2013) Visual scene perception in navigating wood ants. Curr Biol 23:684–690PubMedGoogle Scholar
  103. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47:1940–1951Google Scholar
  104. Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122:73–91PubMedGoogle Scholar
  105. Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111Google Scholar
  106. Maaswinkel H, Whishaw IQ (1999) Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation. Behav Brain Res 99:143–152PubMedGoogle Scholar
  107. Margolis E, Laurence S (2013) In defense of nativism. Phil Stud 165:693–718Google Scholar
  108. Mataric MJ (1995) Designing and understanding adaptive group behavior. Adapt Behav 4:51–80Google Scholar
  109. Mather J (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A 168:491–497Google Scholar
  110. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path integration and the neural basis of the ‘cognitive map’. Nature Rev Neurosci 7:663–678Google Scholar
  111. Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, New YorkGoogle Scholar
  112. Mittelstaedt M-L, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67:566Google Scholar
  113. Möller R (2001) Do insects use templates or parameters for landmark navigation? J Theor Biol 210:33–45PubMedGoogle Scholar
  114. Möller R (2002) Insects could exploit UV-green contrast for landmark navigation. J Theor Biol 214:619–631PubMedGoogle Scholar
  115. Moller P, Görner P (1994) Homing by path integration in the spider Agelena labyrinthica Clerck. J Comp Physiol A 174:221–229Google Scholar
  116. Möller R, Lambrinos D, Pfeifer R, Labhart T, Wehner R (1998) Modeling ant navigation with an autonomous agent. In: Pfeifer R, Blumberg B, Meyer J-A, Wilson SW (eds) From animals to animats. MIT Press, Cambridge, pp 185–194Google Scholar
  117. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290PubMedCentralPubMedGoogle Scholar
  118. Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530Google Scholar
  119. Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371PubMedGoogle Scholar
  120. Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Aust J Zool 53:301–311Google Scholar
  121. Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti I: proportional path integration takes the ant half-way home. J Exp Biol 210:1798–1803PubMedGoogle Scholar
  122. Narendra A, Si A, Sulikowski D, Cheng K (2007) Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti. Behav Ecol Sociobiol 61:1543–1553Google Scholar
  123. Narendra A, Cheng K, Sulikowski D, Wehner R (2008) Search strategies of ants in landmark-rich habitats. J Comp Physiol A 194:929–938Google Scholar
  124. Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683PubMedCentralPubMedGoogle Scholar
  125. Nicholson DJ, Judd PD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (Formica rufa). J Exp Biol 202:1831–1838PubMedGoogle Scholar
  126. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175PubMedGoogle Scholar
  127. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  128. Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116Google Scholar
  129. Osborne JL, Smith A, Clark SJ, Reynolds DR, Barron MC, Lim KS, Reynolds AM (2013) The ontogeny of bumblebee flight trajectories: from naive explorers to experienced foragers. PLoS ONE 8:e78681PubMedCentralPubMedGoogle Scholar
  130. Pearce JM, Bouton ME (2001) Theories of associative learning in animals. Annu Rev Psychol 52:111–139PubMedGoogle Scholar
  131. Potegal M (1982) Vestibular and neostriatal contributions to spatial orientation. In: Potegal M (ed) Spatial abilities: development and physiological foundations. Academic Press, New York, pp 361–387Google Scholar
  132. Raichlen DA, Wood BM, Gordon AD, Mabulla AZP, Marlowe FW, Pontzer H (2014) Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proc Natl Acad Sci USA 111:728–733PubMedCentralPubMedGoogle Scholar
  133. Reynolds AM (2014) Mussels realize Weierstrassian Lévy walks as composite correlated random walks. Sci Rep 4:4409PubMedCentralPubMedGoogle Scholar
  134. Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm: random search patterns and mechanisms. Ecol 90:877–887Google Scholar
  135. Reynolds AM, Smith AD, Menzel R, Greggers U, Reynolds DR, Riley JR (2007a) Displaced honey bees perform optimal scale-free search flights. Ecology 88:1955–1961PubMedGoogle Scholar
  136. Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007b) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 210:3763–3770PubMedGoogle Scholar
  137. Reynolds AM, Schultheiss P, Cheng K (2013) Are Lévy flight patterns derived from the Weber–Fechner law in distance estimation? Behav Ecol Sociobiol 67:1219–1226Google Scholar
  138. Reynolds AM, Schultheiss P, Cheng K (2014) Does the Australian desert ant Melophorus bagoti approximate a Lévy search by an intrinsic bi-modal walk? J Theor Biol 340:17–22PubMedGoogle Scholar
  139. Rich PD, Liaw H-P, Lee AK (2014) Large environments reveal the statistical structure governing hippocampal representations. Science 345:814–817PubMedGoogle Scholar
  140. Ritchie BF (1947) Studies in spatial learning III: two paths to the same location and two paths to two different locations. J Exp Psychol 37:25–38PubMedGoogle Scholar
  141. Roitblat HL, Bever TG, Terrace HS (1984) Animal cognition. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  142. Ronacher B (2008) Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol News 11:53–62Google Scholar
  143. Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled. J Comp Physiol A 177:21–27Google Scholar
  144. Ronacher B, Gallizzi K, Wohlgemuth S, Wehner R (2000) Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J Exp Biol 203:1113–1121PubMedGoogle Scholar
  145. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131Google Scholar
  146. Samsonovich A, McNaughton B (1997) Path integration and cognitive mapping in a continuous attractor neural netwok model. J Neurosci 17:5900–5920PubMedGoogle Scholar
  147. Santschi F (1911) Sur le mécanisme de l’orientation chez les fourmis. Revue Suisse Zool 19:303–338Google Scholar
  148. Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038Google Scholar
  149. Schultheiss P, Cheng K (2013) Finding food: outbound searching behavior in the Australian desert ant Melophorus bagoti. Behav Ecol 24:128–135Google Scholar
  150. Schultheiss P, Nooten SS (2013) Foraging patterns and strategies in an Australian desert ant. Austral Ecol 38:942–951Google Scholar
  151. Schultheiss P, Schwarz S, Cheng K, Wehner R (2012) Foraging ecology of an Australian salt-pan desert ant (genus Melophorus). Aust J Zool 60:311–319Google Scholar
  152. Schultheiss P, Wystrach A, Legge ELG, Cheng K (2013) Information content of visual scenes influences systematic search of desert ants. J Exp Biol 216:742–749PubMedGoogle Scholar
  153. Schultheiss P, Cheng K, Reynolds AM (2015) Searching behavior in social Hymenoptera. Learn Motiv (in press)Google Scholar
  154. Séguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol A 173:103–113PubMedGoogle Scholar
  155. Shettleworth SJ (2010) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  156. Sheynikhovich D, Chavarriaga R, Strösslin T, Arleo A, Gerstner W (2009) Is there a geometric module for spatial orientation? Insights from a rodent navigational model. Psychol Rev 116:540–566PubMedGoogle Scholar
  157. Sims DW, Reynolds AM, Humphries NE, Southall EJ, Wearmouth VJ, Metcalfe B, Twitchett RJ (2014) Hierarchical random walks in trace fossils and the origin of optimal search behavior. Proc Natl Acad Sci USA 111:11073–11078PubMedCentralPubMedGoogle Scholar
  158. Spelke ES, Kinzler KD (2007) Core knowledge. Dev Sci 10:89–96PubMedGoogle Scholar
  159. Spetch ML, Cheng K, MacDonald SE, Linkenhoker BA, Kelly DM, Doerkson SR (1997) Use of landmark configuration in pigeons and humans II: generality across search tasks. J Comp Psychol 111:14–24Google Scholar
  160. Srinivasan MV (2011) Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 91:413–460PubMedGoogle Scholar
  161. Srinivasan MV, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2513–2522PubMedGoogle Scholar
  162. Srinivasan MV, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:757–920Google Scholar
  163. Steck K, Hansson BS, Knaden M (2009) Smells like home: desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front Zool 6:5PubMedCentralPubMedGoogle Scholar
  164. Stieb SM, Hellwig A, Wehner R, Rössler W (2010a) Visual experience affects both behavioral and neuronal aspects in the individual life history of the desert ant Cataglyphis fortis. Dev Neurobiol 72:729–742Google Scholar
  165. Stieb SM, Muenz TS, Wehner R, Rössler W (2010b) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423PubMedGoogle Scholar
  166. Stieb SM, Kelber C, Wehner R, Rössler W (2011) Antennal-lobe organization in desert ants of the genus Cataglyphis. Brain Behav Evol 77:136–146PubMedGoogle Scholar
  167. Stone T, Mangan M, Ardin P, Webb B (2014) Sky segmentation with ultraviolet images can be used for navigation. In: Proceedings of the 2014 Robotics: Science and Systems Conference X. http://roboticsproceedings.org/rss10/index.html
  168. Stürzl W, Zeil J (2007) Depth, contrast and view-based homing in outdoor scenes. Biol Cybern 96:519–531PubMedGoogle Scholar
  169. Taube JS (1998) Head direction cells and the neurophysiological basis for a sense of direction. Prog Neurobiol 55:225–256PubMedGoogle Scholar
  170. Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207PubMedGoogle Scholar
  171. Taube JS, Muller RU, Ranck JB Jr (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats I: description and quantitative analysis. J Neurosci 10:420–435PubMedGoogle Scholar
  172. Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats II: effects of environmental manipulations. J Neurosci 10:436–447PubMedGoogle Scholar
  173. Tchernichovski O, Benjamini Y, Golani I (1998) The dynamics of long-term exploration in the rat-part I: a phase-plane analysis of the relationship between location and velocity. Biol Cybern 78:423–432PubMedGoogle Scholar
  174. Teichroeb JA, Chapman CA (2014) Sensory information and associative cues used in food detection by wild vervet monkeys. Anim Cogn 17:517–528PubMedGoogle Scholar
  175. Tinbergen N (1932) Über die Orientierung des Bienenwolfes (Philanthus triangulum, Fabr.). Z Vergl Physiol 16:305–334Google Scholar
  176. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208PubMedGoogle Scholar
  177. Towne WF (2008) Honeybees can learn the relationship between the solar ephemeris and a newly-experienced landscape. J Exp Biol 211:3737–3743PubMedGoogle Scholar
  178. Towne WF, Moscrip H (2008) The connection between landscapes and the solar ephemeris in honeybees. J Exp Biol 211:3729–3736PubMedGoogle Scholar
  179. Trullier O, Wiener SI, Berthoz A, Meyer JA (1997) Biologically based artificial navigation systems: review and prospects. Prog Neurobiol 51:483–544PubMedGoogle Scholar
  180. Vickerstaff RJ, Cheung A (2010) Which coordinate system for modelling path integration? J Theor Biol 263:242–261PubMedGoogle Scholar
  181. Vickerstaff RJ, Di Paolo EA (2005) Evolving neural models of path integration. J Exp Biol 208:3349–3366PubMedGoogle Scholar
  182. Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE (1996) Lévy flight search patterns of wandering albatrosses. Nature 381:413–415Google Scholar
  183. Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401:911–914PubMedGoogle Scholar
  184. von Frisch K (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften 35:38–43Google Scholar
  185. von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148PubMedGoogle Scholar
  186. von Frisch K (1953) The dancing bees. Harcourt, Brace & World, New YorkGoogle Scholar
  187. von Frisch K (1967) The dance language and orientation of bees. Belknap, CambridgeGoogle Scholar
  188. von Frisch K, Lindauer M (1954) Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41:245–253Google Scholar
  189. Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382PubMedGoogle Scholar
  190. Warrant E, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254PubMedGoogle Scholar
  191. Webb B (2000) What does robotics offer animal behaviour? Anim Behav 60:545–558PubMedGoogle Scholar
  192. Wehner R (1967) Pattern recognition in bees. Nature 215:1244–1248PubMedGoogle Scholar
  193. Wehner R (1968) Optische Orientierungsmechanismen im Heimkehr-Verhalten von Cataglyphis bicolor (Formicidae, Hymenoptera). Revue Suisse Zool 75:1076–1085Google Scholar
  194. Wehner R (1987a) ‘Matched filters’: neural models of the external world. J Comp Physiol A 161:511–531Google Scholar
  195. Wehner R (1987b) Spatial organization of the foraging behavior in individually searching desert ants, Cataglyphis (Sahara desert) and Ocymyrmex (Namib desert). In: Pasteels JM, Deneubourg JM (eds) From individual to collective behavior in insects. Birkhäuser, Basel, pp 15–42Google Scholar
  196. Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritte Zool 39:103–143Google Scholar
  197. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185Google Scholar
  198. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588Google Scholar
  199. Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96Google Scholar
  200. Wehner R (2013) Life as a cataglyphologist: and beyond. Annu Rev Entomol 58:1–18PubMedGoogle Scholar
  201. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579PubMedCentralPubMedGoogle Scholar
  202. Wehner R, Räber F (1979) Visual spatial memory in desert ants, genus Cataglyphis (Formicidae, Hymenoptera). Experientia 35:1569–1571Google Scholar
  203. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338Google Scholar
  204. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30Google Scholar
  205. Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne’s thread. Ethol Ecol Evol 2:27–48Google Scholar
  206. Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants Cataglyphis bicolor (Hymenoptera: Formicidae). Gustav Fischer Verlag, StuttgartGoogle Scholar
  207. Wehner R, Marsh AC, Wehner S (1992) Desert ants on a thermal tightrope. Nature 357:586–587Google Scholar
  208. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  209. Wehner R, Meier C, Zollikofer C (2004) The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol Entomol 29:240–250Google Scholar
  210. Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79PubMedGoogle Scholar
  211. West SA, El Mouden C, Gardner A (2011) Sixteen common misconceptions about the evolution of cooperation in humans. Evol Hum Behav 32:231–262Google Scholar
  212. Wiener J, Shettleworth S, Bingman VP, Cheng K, Healy S, Jacobs LF, Jeffery KJ, Mallot HA, Menzel R, Newcombe NS (2011) Animal navigation: a synthesis. In: Menzel R, Fischer J (eds) Animal thinking: contemporary issues in comparative cognition. MIT Press, Cambridge, pp 51–76Google Scholar
  213. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967PubMedGoogle Scholar
  214. Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207PubMedGoogle Scholar
  215. Wittmann T, Schwegler H (1995) Path integration: a network model. Biol Cybern 73:569–575Google Scholar
  216. Wolf H (2011) Odometry and insect navigation. J Exp Biol 214:1629–1641PubMedGoogle Scholar
  217. Wystrach A, Beugnon G, Cheng K (2011) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21PubMedCentralPubMedGoogle Scholar
  218. Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215:44–55PubMedGoogle Scholar
  219. Wystrach A, Mangan M, Philippides A, Graham P (2013a) Snapshots in ants? New interpretations of paradigmatic experiments. J Exp Biol 216:1766–1770PubMedGoogle Scholar
  220. Wystrach A, Schwarz S, Baniel A, Cheng K (2013b) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B 280:20131677PubMedCentralPubMedGoogle Scholar
  221. Wystrach A, Philippides A, Aurejac A, Cheng K, Graham P (2014a) Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J Comp Physiol A 200:615–626Google Scholar
  222. Wystrach A, Schwarz S, Schultheiss P, Baniel A, Cheng K (2014b) Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti. J Comp Physiol A 200:591–601Google Scholar
  223. Zeil J (1993a) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) I: description of flight. J Comp Physiol A 172:189–205Google Scholar
  224. Zeil J (1993b) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) II: similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172:207–222Google Scholar
  225. Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293PubMedGoogle Scholar
  226. Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25Google Scholar
  227. Zeil J, Zanker JM (1997) A glimpse into crabworld. Vision Res 37:3417–3426PubMedGoogle Scholar
  228. Zeil J, Hofmann MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am 20:450–469Google Scholar
  229. Zeil J, Narendra A, Stürzl W (2014) Looking and homing: how displaced ants decide where to go. Phil Trans R Soc B 369:20130034PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations