Journal of Comparative Physiology A

, Volume 200, Issue 12, pp 1015–1022 | Cite as

Dichromatic vision in a fruit bat with diurnal proclivities: the Samoan flying fox (Pteropus samoensis)

  • Amanda D. Melin
  • Christina F. Danosi
  • Gary F. McCracken
  • Nathaniel J. Dominy
Original Paper

Abstract

A nocturnal bottleneck during mammalian evolution left a majority of species with two cone opsins, or dichromatic color vision. Primate trichromatic vision arose from the duplication and divergence of an X-linked opsin gene, and is long attributed to tandem shifts from nocturnality to diurnality and from insectivory to frugivory. Opsin gene variation and at least one duplication event exist in the order Chiroptera, suggesting that trichromatic vision could evolve under favorable ecological conditions. The natural history of the Samoan flying fox (Pteropus samoensis) meets these conditions—it is a large bat that consumes nectar and fruit and demonstrates strong diurnal proclivities. It also possesses a visual system that is strikingly similar to that of primates. To explore the potential for opsin gene duplication and divergence in this species, we sequenced the opsin genes of 11 individuals (19 X-chromosomes) from three South Pacific islands. Our results indicate the uniform presence of two opsins with predicted peak sensitivities of ca. 360 and 553 nm. This result fails to support a causal link between diurnal frugivory and trichromatic vision, although it remains plausible that the diurnal activities of P. samoensis have insufficient antiquity to favor opsin gene renovation.

Keywords

Chiroptera Megachiroptera Pteropodidae Euarchontoglires Primate evolution 

Supplementary material

359_2014_951_MOESM1_ESM.pdf (68 kb)
Alignment of SWS gene of one Pteropus samoensis individual sequenced in the present study along with P. giganteus (GenBank accession no EU912361.1), P. pumilus [GenBank Accession no EU912362.1], and P. rodricensis [GenBank Accession no EU912363.1]. Introns and exons are labeled above their starting position. The critical tuning sites and the Schiff base counterion (Glu-113) are highlighted in red and listed with the corresponding amino acids (PDF 67 kb)
359_2014_951_MOESM2_ESM.pdf (86 kb)
The LWS gene of Pteropus giganteus [GenBank accession no EU912348.1] in alignment with data from the present study (representing seven individuals of P. samoensis). Introns and exons are labeled above their starting position. The critical tuning sites are highlighted in red and listed with the corresponding amino acids (PDF 85 kb)
359_2014_951_MOESM3_ESM.pdf (77 kb)
Partial protein sequences for the SWS opsin gene of Pteropussamoensis, aligned relative to congeners [GenBank accession nos: P. giganteus - EU912361.1, P. pumilus - EU912362.1, P. rodricensis - EU912363.1] (PDF 77 kb)
359_2014_951_MOESM4_ESM.pdf (78 kb)
Partial protein sequences for the LWS opsin gene of seven Pteropussamoensis individuals, aligned relative to congener P. giganteus [GenBank accession no: EU912348.1] (PDF 77 kb)

References

  1. Almeida C, Giannini NP, Simmons NB, Helgen KM (2014) Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Mol Phylogenet Evol 77:83–95PubMedCrossRefGoogle Scholar
  2. Banack SA (1998) Diet selection and resource use by flying foxes (genus Pteropus). Ecology 79:1949–1967CrossRefGoogle Scholar
  3. Banack SA (2001) Pteropus samoensis. Mammal Species, vol 661., pp 1–4Google Scholar
  4. Banack SA, Grant GS (2003) Reproduction and behaviour of the Samoan flying fox, Pteropus samoensis (Chiroptera, Pteropodidae). Mammalia 67:419–438CrossRefGoogle Scholar
  5. Brooke AP (2001) Population status and behaviours of the Samoan flying fox (Pteropus samoensis) on Tutuila Island, American Samoa. J Zool 254:309–319CrossRefGoogle Scholar
  6. Brooke AP, Solek C, Tualaulelei A (2000) Roosting behavior of colonial and solitary flying foxes in American Samoa (Chiroptera: Pteropodidae). Biotropica 32:338–350CrossRefGoogle Scholar
  7. Cartmill M (2002) Paleoanthropology: science or mythological charter? J Anthropol Res 58:183–201Google Scholar
  8. Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate colour vision. Biol Lett 2:217–221PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cox PA (1983) Observations on the natural history of Samoan bats. Mammalia 47:519–523CrossRefGoogle Scholar
  10. Cox PA (1984) Chiropterophily and ornithophily in Freycinetia (Pandanaceae) in Samoa. Plant Syst Evol 144:277–290CrossRefGoogle Scholar
  11. Cox PA, Elmqvist T, Pierson ED, Rainey WE (1991) Flying foxes as strong interactors in South Pacific island ecosystems: a conservation hypothesis. Conserv Biol 5:448–454CrossRefGoogle Scholar
  12. Davies WIL, Collin SP, Hunt DM (2012) Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 21:3121–3158PubMedCrossRefGoogle Scholar
  13. Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366PubMedCrossRefGoogle Scholar
  14. Dominy NJ, Svenning J-C, Li W-H (2003) Historical contingency in the evolution of primate color vision. J Hum Evol 44:25–45PubMedCrossRefGoogle Scholar
  15. Douglas RH, Jeffery G (2014) The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc R Soc Lond B 281:20132995CrossRefGoogle Scholar
  16. Dulai KS, von Dornum M, Mollon JD, Hunt DM (1999) The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res 9:629–638PubMedGoogle Scholar
  17. Feller KD, Lagerholm S, Clubwalal R, Silver MT, Haughery D, Ryan JM, Loew ER, Deutschlander ME, Kenyon KL (2009) Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vespertilionidae). Comp Biochem Physiol B 154:412–418PubMedCrossRefGoogle Scholar
  18. Grant GS, Craig P, Trail P (1997) Cyclone-induced shift in foraging behavior in flying foxes in American Samoa. Biotropica 29:224–228CrossRefGoogle Scholar
  19. Hall MI, Kamilar JM, Kirk EC (2012) Eye shape and the nocturnal bottleneck of mammals. Proc R Soc Lond B 279:4962–4968CrossRefGoogle Scholar
  20. Hiramatsu C, Radlwimmer FB, Yokoyama S, Kawamura S (2004) Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of new world monkeys for testing the tuning effect of residues at sites 229 and 233. Vision Res 44:2225–2231PubMedCrossRefGoogle Scholar
  21. Hunt DM, Carvalho LS, Cowing JA, Parry JWL, Wilkie SE, Davies WL, Bowmaker JK (2007) Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem Photobiol 83:303–310PubMedCrossRefGoogle Scholar
  22. Isbell LA (2006) Snakes as agents of evolutionary change in primate brains. J Hum Evol 51:1–35PubMedCrossRefGoogle Scholar
  23. Jacobs GH (2009) Evolution of colour vision in mammals. Phil Trans R Soc Lond B 364:2957–2967CrossRefGoogle Scholar
  24. Jacobs GH, Williams GA, Cahill H, Nathans J (2007) Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315:1723–1725PubMedCrossRefGoogle Scholar
  25. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  26. Kalko EKV, Herre EA, Handley CO Jr (1996) Relation of fig fruit characteristics to fruit-eating bats in the New and Old World tropics. J Biogeogr 23:565–576CrossRefGoogle Scholar
  27. Lomascolo S, Levey D, Kimball R, Bolker BM, Albom HT (2010) Dispersers shape fruit diversity in Ficus (Moraceae). Proc Natl Acad Sci USA 107:14668–14672PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lucas PW, Dominy NJ, Riba-Hernandez P, Stoner KE, Yamashita N, Lorí-Calderön E, Petersen-Pereira W, Rojas-Durán Y, Salas-Pena R, Solis-Madrigal S, Osorio D, Darvell BW (2003) Evolution and function of routine trichromatic vision in primates. Evolution 57:2636–2643PubMedCrossRefGoogle Scholar
  29. Martin P (1998) Colour processing in the primate retina: recent progress. J Physiol 513:631–638PubMedCentralPubMedCrossRefGoogle Scholar
  30. Melin AD, Fedigan LM, Hiramatsu C, Sendall CL, Kawamura S (2007) Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. Anim Behav 73:205–214CrossRefGoogle Scholar
  31. Melin AD, Fedigan LM, Hiramatsu C, Hiwatashi T, Parr N, Kawamura S (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775CrossRefGoogle Scholar
  32. Melin AD, Fedigan LM, Young HC, Kawamura S (2010) Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Curr Zool 56:300–312Google Scholar
  33. Melin AD, Matsushita Y, Moritz GL, Dominy NJ, Kawamura S (2013) Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proc R Soc Lond B 280:20130189CrossRefGoogle Scholar
  34. Mollon JD (1989) “Tho’ she kneel’d in that place where they grew.” The uses and origins of primate color vision. J Exp Biol 146:21–38PubMedGoogle Scholar
  35. Müller B, Goodman SM, Peichl L (2007) Cone photoreceptor diversity in the retinas of fruit bats (Megachiroptera). Brain Behav Evol 70:90–104PubMedCrossRefGoogle Scholar
  36. Müller B, Glösmann M, Peichl L, Knop GC, Hagemann C, Ammermüller J (2009) Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One 4:e6390PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  38. Nelson SL, Miller MA, Heske EJ, Fahey GC Jr (2000a) Nutritional quality of leaves and unripe fruit consumed as famine foods by the flying foxes of Samoa. Pac Sci 54:301–311Google Scholar
  39. Nelson SL, Miller MA, Heske EJ, Fahey GC Jr (2000b) Nutritional consequences of a change in diet from native to agricultural fruits for the Samoan fruit bat. Ecography 23:393–401CrossRefGoogle Scholar
  40. Pessoa DMA, Maia R, de Albuquerque Ajuz RC, De Moraes PZPMR, Spyrides MHC, Pessoa VF (2014) The adaptive value of primate color vision for predator detection. Am J Primatol 76:721–729PubMedCrossRefGoogle Scholar
  41. Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306PubMedCrossRefGoogle Scholar
  42. Pettigrew JD (1995) Flying primates: crashed, or crashed through? Symp Zool Soc Lond 67:3–26Google Scholar
  43. Pierson ED, Elmqvist T, Rainey WE, Cox PA (1996) Effects of tropical cyclonic storms on flying fox populations on the South Pacific Islands of Samoa. Conserv Biol 10:438–451CrossRefGoogle Scholar
  44. Polyak S (1957) The vertebrate visual system. University of Chicago Press, ChicagoGoogle Scholar
  45. Ross C (1996) An adaptive explanation for the origin of the Anthropoidea (Primates). Am J Primatol 40:205–230CrossRefGoogle Scholar
  46. Ross CF (2000) Into the light: the origin of Anthropoidea. Annu Rev Anthropol 29:147–194CrossRefGoogle Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  48. Scanlon AT, Petit S, Sternberg LS (2013) Insectivory in Fijian flying foxes (Pteropodidae). Aust J Zool 61:342–349CrossRefGoogle Scholar
  49. Sherman JA, Fall PL (2010) Observations on feeding frequencies among native and exotic birds and fruit bats at Erythrina variegata and Dysoxylum trees on American Samoa. In: Haberle S, Stevenson J, Prebble M (eds) Altered ecologies: fire, climate and human influence on terrestrial landscapes. Australian National University Press, Canberra, pp 101–116Google Scholar
  50. Talebi MG, Pope TR, Vogel ER, Neitz M, Dominy NJ (2006) Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae). Mol Ecol 15:551–558PubMedCrossRefGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCrossRefGoogle Scholar
  52. Thomson SC, Brooke AP, Speakman JR (1998) Diurnal activity in the Samoan flying fox, Pteropus samoensis. Phil Trans R Soc Lond B 353:1595–1606CrossRefGoogle Scholar
  53. Thomson SC, Brooke AP, Speakman JR (2002) Soaring behaviour in the Samoan flying fox (Pteropus samoensis). J Zool 256:55–62CrossRefGoogle Scholar
  54. Utzurrum RCB, Seamon JO (2001) Monitoring for conservation and management: some empirical and theoretical approaches. Sylvatrop 10:88–105Google Scholar
  55. Utzurrum RCB, Wiles GJ, Brooke AP, Worthington DJ (2003) Count methods and population trends in Pacific island flying foxes. In: O’Shea TJ, Bogan (eds) Monitoring trends in bat populations of the United States and Territories: problems and prospects. US Department of the Interior, U.S. Geological Survey Information and Technology Report, Washington DC, 49–61Google Scholar
  56. Veilleux CC, Bolnick DA (2009) Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol 71:86–90PubMedCrossRefGoogle Scholar
  57. Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield HillsCrossRefGoogle Scholar
  58. Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, Li W-H (2004) Molecular evolution of bat color vision genes. Mol Biol Evol 21:295–302PubMedCrossRefGoogle Scholar
  59. Wilson DE, Engbring J (1992) The flying foxes Pteropus samoensis and Pteropus tonganus: status in Fiji and Samoa. In: Wilson DE, Graham GL (eds) Pacific island flying foxes: proceedings of an international conservation conference. Department of the Interior, Fish and Wildlife Service, Washington DC, pp 74–101Google Scholar
  60. Winter Y, Lopez J, von Helversen O (2003) Ultraviolet vision in a bat. Nature 425:612–614PubMedCrossRefGoogle Scholar
  61. Xuan F, Hu K, Zhu T, Racey P, Wang X, Sun Y (2012a) Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia 29:109–114Google Scholar
  62. Xuan F, Hu K, Zhu T, Racey P, Wang X, Zhang S, Sun Y (2012b) Immunohistochemical evidence of cone- based ultraviolet vision in divergent bat species and implications for its evolution. Comp Biochem Physiol B 161:398–403PubMedCrossRefGoogle Scholar
  63. Yokoyama S, Starmer WT, Takahashi Y, Tada T (2006) Tertiary structure and spectral tuning of UV and violet pigments in vertebrates. Gene 365:95–103PubMedCentralPubMedCrossRefGoogle Scholar
  64. Yokoyama S, Yang H, Starmer WT (2008) Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179:2037–2043PubMedCentralPubMedCrossRefGoogle Scholar
  65. Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S (2009a) The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA 106:8980–8985PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zhao H, Xu D, Zhou Y, Flanders J, Zhang S (2009b) Evolution of opsin genes reveals a functional role of vision in the echolocating little brown bat (Myotis lucifugus). Biochem Syst Ecol 37:154–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amanda D. Melin
    • 1
    • 2
  • Christina F. Danosi
    • 1
    • 3
  • Gary F. McCracken
    • 4
  • Nathaniel J. Dominy
    • 1
    • 3
  1. 1.Department of AnthropologyDartmouth CollegeHanoverUSA
  2. 2.Department of AnthropologyWashington University in St. LouisSt. LouisUSA
  3. 3.Department of Biological SciencesDartmouth CollegeHanoverUSA
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations