Journal of Comparative Physiology A

, Volume 200, Issue 6, pp 449–461 | Cite as

Cognitive components of color vision in honey bees: how conditioning variables modulate color learning and discrimination

  • Aurore Avarguès-Weber
  • Martin GiurfaEmail author


Since the demonstration of color vision in honey bees 100 years ago by Karl von Frisch, appetitive conditioning to color targets has been used as the principal way to access behavioral aspects of bee color vision. Yet, analyses on how conditioning parameters affect color perception remained scarce. Conclusions on bee color vision have often been made without referring them to the experimental context in which they were obtained, and thus presented as absolute facts instead of realizing that subtle variations in conditioning procedures might yield different results. Here, we review evidence showing that color learning and discrimination in bees are not governed by immutable properties of their visual system, but depend on how the insects are trained and thus learn a task. The use of absolute or differential conditioning protocols, the presence of aversive reinforcement in differential conditioning and the degrees of freedom of motor components determine dramatic variations in color discrimination. We, thus, suggest top-down attentional modulation of color vision to explain the changes in color learning and discrimination reviewed here. We discuss the possible neural mechanisms of this modulation and conclude that color vision experiments require a careful consideration of how training parameters shape behavioral responses.


Cognition Color vision Color learning Conditioning Top-down processing 



We thank two anonymous reviewers for comments and corrections on a previous version of this work. This work was supported by the French National Research Agency (ANR; grant MINICOG to M.G.) and the Human Frontier Science Program (HFSP). Martin Giurfa thanks the Institut Universitaire de France, the French Research Council (CNRS) and the University Paul Sabatier of Toulouse for support.


  1. Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15(13):1165–1175. doi: 10.1016/j.cub.2005.05.025 PubMedCrossRefGoogle Scholar
  2. Avarguès-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5(10):e15370PubMedCentralPubMedCrossRefGoogle Scholar
  3. Avarguès-Weber A, Mota T, Giurfa M (2012) New vistas on honey bee vision. Apidologie 43(3):244–268. doi: 10.1007/s13592-012-0124-2 CrossRefGoogle Scholar
  4. Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397PubMedCrossRefGoogle Scholar
  5. Benard J, Stach S, Giurfa M (2006) Categorization of visual stimuli in the honeybee Apis mellifera. Anim Cognit 9(4):257–270CrossRefGoogle Scholar
  6. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119PubMedCrossRefGoogle Scholar
  7. Blenau W, Thamm M (2011) Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies. Lessons from Drosophila melanogaster and Apis mellifera. Arthr Struct Dev 40(5):381–394. doi: 10.1016/j.asd.2011.01.004 CrossRefGoogle Scholar
  8. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510PubMedCrossRefGoogle Scholar
  9. Bukovac Z, Dorin A, Dyer AG (2013) A-bees see: a simulation to assess social bee visual attention during complex search tasks. Adv Artif Life, ECAL, pp 276–283Google Scholar
  10. Burns JG, Dyer AG (2008) Diversity of speed-accuracy strategies benefits social insects. Curr Biol 18(20):R953–R954PubMedCrossRefGoogle Scholar
  11. Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a general representation of colour opponency. J Comp Physiol A 170:533–543Google Scholar
  12. Chittka L, Briscoe A (2001) Why sensory ecology needs to become more evolutionary––insect color vision as a case in point. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer-Verlag, Berlin, pp 19–37CrossRefGoogle Scholar
  13. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Psychophysics: bees trade off foraging speed for accuracy. Nature 424(6947):388PubMedCrossRefGoogle Scholar
  14. Conway BR (2009) Color vision, cones, and color-coding in the cortex. Neuroscientist 15(3):274–290PubMedCrossRefGoogle Scholar
  15. Dacey DM (1996) Circuitry for color coding in the primate retina. Proc Natl Acad Sci USA 93(2):582–588PubMedCentralPubMedCrossRefGoogle Scholar
  16. de Brito Sanchez MG, Chen C, Li J, Liu F, Gauthier M, Giurfa M (2008) Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J Comp Physiol A 194(10):861–869. doi: 10.1007/s00359-008-0357-8 CrossRefGoogle Scholar
  17. Dobrin SE, Fahrbach SE (2012) Visual associative learning in restrained honey bees with intact antennae. PLoS One 7(6):e37666. doi: 10.1371/journal.pone.0037666 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dyer AG (2012) The mysterious cognitive abilities of bees: why models of visual processing need to consider experience and individual differences in animal performance. J Exp Biol 215:387–395. doi: 10.1242/jeb.038190 PubMedCrossRefGoogle Scholar
  19. Dyer AG, Chittka L (2004a) Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. J Comp Physiol A 190(9):759–763CrossRefGoogle Scholar
  20. Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227PubMedCrossRefGoogle Scholar
  21. Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191(6):547–557CrossRefGoogle Scholar
  22. Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194(7):617–627. doi: 10.1007/s00359-008-0335-1 CrossRefGoogle Scholar
  23. Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc Biol Sci 278:952–959. doi: 10.1098/rspb.2010.2412 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451(4):362–373. doi: 10.1002/cne.10355 PubMedCrossRefGoogle Scholar
  25. Forel A (1910) Das Sinnesleben der Insekten: eine Sammlung von experimentellen und kritischen Studien über Insektenpsychologie (1910). Reinhardt, Munich, p 172Google Scholar
  26. Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Die Naturwissenschaften 91(5):228–231PubMedCrossRefGoogle Scholar
  27. Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19(2):54–66. doi: 10.1101/lm.024711.111 PubMedCrossRefGoogle Scholar
  28. Giurfa M, Núñez JA, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A 177:247–259CrossRefGoogle Scholar
  29. Giurfa M, Hammer M, Stach S, Stollhoff N, Muller-deisig N, Mizyrycki C (1999) Pattern learning by honeybees: conditioning procedure and recognition strategy. Anim Behav 57(2):315–324PubMedCrossRefGoogle Scholar
  30. Gouras P (1972) Color opponency from fovea to striate cortex. Invest Ophthalmol 11(6):427–434PubMedGoogle Scholar
  31. Greggers U, Menzel R (1993) Memory dynamics and foraging strategies of honeybees. Behav Ecol Sociobiol 32:17–29CrossRefGoogle Scholar
  32. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  33. Helversen Ov (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472CrossRefGoogle Scholar
  34. Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192(7):691–700. doi: 10.1007/s00359-005-0091-4 CrossRefGoogle Scholar
  35. Hori S, Takeuchi H, Kubo T (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. J Comp Physiol A 193(8):825–833. doi: 10.1007/s00359-007-0234-x CrossRefGoogle Scholar
  36. Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee II. Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53CrossRefGoogle Scholar
  37. Kühn A (1927) Über den Farbensinn der Bienen. Z Vergl Physiol 5:762–800. doi: 10.1007/bf00302277 CrossRefGoogle Scholar
  38. Kühn A, Pohl R (1921) Dressurfähigkeit der Bienen auf Spektrallinien. Die Naturwissenschaften 9(37):738–740. doi: 10.1007/bf01487183 CrossRefGoogle Scholar
  39. Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Fac Sci Hokkaido Univ Ser VI Zool 13:458–464Google Scholar
  40. Li W, Howard JD, Parrish TB, Gottfried JA (2008) Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science 319(5871):1842–1845. doi: 10.1126/science.1152837 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lovell JH (1910) The color sense of the honey-bee: can bees distinguish colors? Am Nat 44:673–692CrossRefGoogle Scholar
  42. Lubbock J (1883) Ants, bees, and wasps: a record of observations on the habits of the social Hymenoptera. Kegan Paul, Trench, and Co, London, p 448Google Scholar
  43. Matsumoto Y, Menzel R, Sandoz JC, Giurfa M (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures. J Neurosci Meths 211(1):159–167CrossRefGoogle Scholar
  44. Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56:22–62CrossRefGoogle Scholar
  45. Menzel R (1968) Das Gedaechtnis der Honigbiene fuer Spektralfarben. I.Kurzzeitiges und langzeitiges Behalten. Z Vergl Physiol 60:82–102CrossRefGoogle Scholar
  46. Menzel R (1985) Learning in honey bees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Gustav Fischer Verlag, Stuttgart, pp 55–74Google Scholar
  47. Menzel R, Backhaus W (1989) Color vision in honey bees: phenomena and physiological mechanisms. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin, pp 281–297CrossRefGoogle Scholar
  48. Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. The perception of colour. MacMillan Press, London, pp 262–288Google Scholar
  49. Menzel R, Giurfa M (2006) Dimensions of cognition in an insect, the honeybee. Behav Cognit Neurosci Rev 5:24–40CrossRefGoogle Scholar
  50. Menzel R, Manz G (2005) Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain. J Exp Biol 208:4317–4332PubMedCrossRefGoogle Scholar
  51. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68:81–120CrossRefGoogle Scholar
  52. Miller SM, Ngo TT, van Swinderen B (2012) Attentional switching in humans and flies: rivalry in large and miniature brains. Front Hum Neurosci 5:188. doi: 10.3389/fnhum.2011.00188 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Morawetz L, Spaethe J (2012) Visual attention in a complex search task differs between honeybees and bumblebees. J Exp Biol 215(14):2515–2523. doi: 10.1242/jeb.066399 PubMedCrossRefGoogle Scholar
  54. Müller H (1882) Versuche über die Farbenliebhaberei der Honigbiene. Kosmos 12:273–299Google Scholar
  55. Niggebrugge C, Leboulle G, Menzel R, Komischke B, de Ibarra NH (2009) Fast learning but coarse discrimination of colours in restrained honeybees. J Exp Biol 212(9):1344–1350. doi: 10.1242/jeb.021881 PubMedCrossRefGoogle Scholar
  56. Núñez JA (1982) Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. J Apicult Res 21:139–150Google Scholar
  57. O’Day PM, Lisman JE (1985) Octopamine enhances dark-adaptation in Limulus ventral photoreceptors. J Neurosci 5:1490–1496PubMedGoogle Scholar
  58. Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, OxfordGoogle Scholar
  59. Pophof B (2000) Octopamine modulates the sensitivity of silkmoth pheromone receptor neurons. J Comp Physiol A 186:307–313PubMedCrossRefGoogle Scholar
  60. Reser DH, Wijesekara Witharanage R, Rosa MGP, Dyer AG (2012) Honeybees (Apis mellifera) learn color discriminations via differential conditioning independent of long wavelength (green) photoreceptor modulation. PLoS One 7(11):e48577. doi: 10.1371/journal.pone.0048577 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Resnik J, Sobel N, Paz R (2011) Auditory aversive learning increases discrimination thresholds. Nat Neurosci 14(6):791-U157. doi: 10.1038/nn.2802 CrossRefGoogle Scholar
  62. Riveros AJ, Gronenberg W (2012) Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens). Anim Cognit 15(6):1183–1193. doi: 10.1007/s10071-012-0542-6 CrossRefGoogle Scholar
  63. Rodríguez-Gironés MA, Trillo A, Corcobado G (2013) Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees. PLoS One 8(8):e71551. doi: 10.1371/journal.pone.0071551 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Sareen P, Wolf R, Heisenberg M (2011) Attracting the attention of a fly. Proc Natl Acad Sci USA 108(17):7230–7235. doi: 10.1073/pnas.1102522108 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Schäfer S, Bicker G (1986) Common projection areas of 5-HT- and GABA-like immunoreactive fibres in the visual system of the honeybee. Brain Res 380:368–370PubMedCrossRefGoogle Scholar
  66. Schäfer S, Rehder V (1989) Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honey bee. J Comp Neurol 280:43–58PubMedCrossRefGoogle Scholar
  67. Scheiner R, Baumann A, Blenau W (2006) Aminergic control and modulation of honeybee behaviour. Curr Neuropharmacol 4(4):259–276PubMedCentralPubMedCrossRefGoogle Scholar
  68. Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346PubMedCrossRefGoogle Scholar
  69. Schurmann FW, Klemm N (1984) Serotonin-immunoreactive neurons in the brain of the honeybee. J Comp Neurol 225(4):570–580. doi: 10.1002/cne.902250407 PubMedCrossRefGoogle Scholar
  70. Schurmann FW, Elekes K, Geffard M (1989) Dopamine-like immunoreactivity in the bee brain. Cell Tiss Res 256(2):399–410CrossRefGoogle Scholar
  71. Skinner BF (1938) The behavior of organisms. An experimental analysis. Appleton-Century-Crofts, New YorkGoogle Scholar
  72. Skorupski P, Chittka L (2011) Is colour cognitive? Optics Laser Technol 43:251–260CrossRefGoogle Scholar
  73. Spaethe J, Tautz J, Chittka L (2006) Do honeybees detect colour targets using serial or parallel visual search? J Exp Biol 209:987–993PubMedCrossRefGoogle Scholar
  74. Spence KW (1937) The differential response in animal to stimuli varying within a single dimension. Psychol Rev 44:430–444CrossRefGoogle Scholar
  75. Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179CrossRefGoogle Scholar
  76. Tang S, Juusola M (2010) Intrinsic activity in the fly brain gates visual information during behavioral choices. PLoS One 5(12):e14455. doi: 10.1371/journal.pone.0014455 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Tedjakumala SR, Aimable M, Giurfa M (2014) Pharmacological modulation of aversive responsiveness in honey bees. Front Behav Neurosci 7. doi: 10.3389/fnbeh.2013.00221
  78. Thamm M, Balfanz S, Scheiner R, Baumann A, Blenau W (2010) Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell Mol Life Sci 67(14):2467–2479. doi: 10.1007/s00018-010-0350-6 PubMedCrossRefGoogle Scholar
  79. van Swinderen B (2007a) Attention-like processes in Drosophila require short-term memory genes. Science 315(5818):1590–1593. doi: 10.1126/science.1137931 PubMedCrossRefGoogle Scholar
  80. van Swinderen B (2007b) The attention span of a fly. Fly 1(3):187–189Google Scholar
  81. van Swinderen B (2011) Attention in Drosophila. Int Rev Neurobiol 99:51–85PubMedCrossRefGoogle Scholar
  82. van Swinderen B, Andretic R (2011) Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc Biol Sci 278(1707):906–913PubMedCentralPubMedCrossRefGoogle Scholar
  83. van Swinderen B, Greenspan RJ (2003) Salience modulates 20–30 Hz brain activity in Drosophila. Nat Neurosci 6(6):579–586PubMedCrossRefGoogle Scholar
  84. von Dobkiewicz L (1912) Beitrag zur Biologie der Honigbiene. Biol Ztrbl 32:664–694Google Scholar
  85. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Abt Allg Zool Physiol Tiere 37:1–238Google Scholar
  86. von Hess C (1913) Experimentelle Untersuchungen ueber den angeblichen Farbensinn von Bienen. Zool Jahrb Abt Allg Zool Physiol 34:81–106Google Scholar
  87. Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vis Res 41(5):639–653PubMedCrossRefGoogle Scholar
  88. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, vol 2. Wiley, New YorkGoogle Scholar
  89. Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925PubMedCrossRefGoogle Scholar
  90. Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M (2006) Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J Gen Physiol 127:495–510PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Research Centre for Animal Cognition, UPSUniversité de ToulouseToulouse Cedex 9France
  2. 2.Research Centre for Animal CognitionCNRSToulouse Cedex 9France

Personalised recommendations