Journal of Comparative Physiology A

, Volume 200, Issue 7, pp 615–626 | Cite as

Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti

  • Antoine Wystrach
  • Andrew Philippides
  • Amandine Aurejac
  • Ken Cheng
  • Paul Graham
Original Paper


Ants are excellent navigators, using a combination of innate strategies and learnt information to guide habitual routes. The mechanisms underlying this behaviour are little understood though one avenue of investigation is to explore how innate sensori-motor routines are used to accomplish route navigation. For instance, Australian desert ant foragers are occasionally observed to cease translation and rotate on the spot. Here, we investigate this behaviour using high-speed videography and computational analysis. We find that scanning behaviour is saccadic with pauses separated by fast rotations. Further, we have identified four situations where scanning is typically displayed: (1) by naïve ants on their first departure from the nest; (2) by experienced ants departing from the nest for their first foraging trip of the day; (3) by experienced ants when the familiar visual surround was experimentally modified, in which case frequency and duration of scans were proportional to the degree of modification; (4) when the information from visual cues is at odds with the direction indicated by the ant’s path integration system. Taken together, we see a general relationship between scanning behaviours and periods of uncertainty.


Ants Navigation Saccadic scanning View-based homing Uncertainty 



The experiments detailed here comply with the ethical standards of the countries where they were undertaken and analysed.


  1. Andel D, Wehner R (2004) Path integration in desert ants, Cataglyphis: how to make a homing ant run away from home. Proc R Soc B 271(1547):1485–1489PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. Plos Comp Biol 8(1):e1002336CrossRefGoogle Scholar
  3. Baird E, Byrne MJ, Smolka J, Warrant EJ, Dacke M (2012) The dung beetle dance: an orientation behaviour? PLoS One 7(1):e30211PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol 151(4):521–543CrossRefGoogle Scholar
  5. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133(4):625–637PubMedCrossRefGoogle Scholar
  6. Cheng K, Narendra A, Sommer S, Wehner R (2009) Travelling in clutter: navigation in the Central Australian desert ant M. bagoti. Behav Process 80(3):261–268CrossRefGoogle Scholar
  7. Collett TS (1995) Making learning easy––the acquisition of visual information during the orientation flights of social wasps. J Comp Physiol A 177(6):737–747CrossRefGoogle Scholar
  8. Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci USA 107(25):11638–11643PubMedCentralPubMedCrossRefGoogle Scholar
  9. Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22(10):927–932PubMedCrossRefGoogle Scholar
  10. Collett M, Collett TS (2000) How do insects use path integration for their navigation? Biol Cyber 83(3):245–259CrossRefGoogle Scholar
  11. Collett TS, Land MF (1975) Visual spatial memory in a hoverfly. J Comp Physiol 100:59–84CrossRefGoogle Scholar
  12. Collett TS, Dillmann E, Giger A, Wehner R (1992) Visual landmarks and route following in desert ants. J Comp Physiol A 170(4):435–442CrossRefGoogle Scholar
  13. Collett TS, Graham P, Harris RA, Hempel-De-Ibarra N (2006) Navigational memories in ants and bees: memory retrieval when selecting and following routes. Adv Stud Behav 36:123–172CrossRefGoogle Scholar
  14. Collett TS, Graham P, Harris RA (2007) Novel landmark-guided routes in ants. J Exp Biol 210(12):2025–2032PubMedCrossRefGoogle Scholar
  15. Durier V, Graham P, Collett TS (2003) Snapshot memories and landmark guidance in wood ants. Curr Biol 13(18):1614–1618PubMedCrossRefGoogle Scholar
  16. Fourcassie V (1991) Landmark orientation in natural situations in the Red Wood Ant Formica-Lugubris-Zett (Hymenoptera, Formicidae). Ethol Ecol Evol 3(2):89–99CrossRefGoogle Scholar
  17. Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204(12):2063–2072PubMedGoogle Scholar
  18. Graham P, Cheng K (2009a) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19(20):R935–R937PubMedCrossRefGoogle Scholar
  19. Graham P, Cheng K (2009b) Which portion of the natural panorama is used for view-based navigation in the Australian desert ant? J Comp Physiol A 195(7):681–689CrossRefGoogle Scholar
  20. Graham P, Collett TS (2002) View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. J Exp Biol 205(16):2499–2509PubMedGoogle Scholar
  21. Graham P, Collett TS (2006) Bi-directional route learning in wood ants. J Exp Biol 209(18):3677–3684PubMedCrossRefGoogle Scholar
  22. Graham P, Durier V, Collett TS (2004) The binding and recall of snapshot memories in wood ants (Formica rufa L.). J Exp Biol 207(3):393–398PubMedCrossRefGoogle Scholar
  23. Harris RA, Graham P, Collett TS (2007) Visual cues for the retrieval of landmark memories by navigating wood ants. Curr Biol 17(2):93–102PubMedCentralPubMedCrossRefGoogle Scholar
  24. Judd SPD, Collett TS (1998) Multiple stored views and landmark guidance in ants. Nature 392(6677):710–714CrossRefGoogle Scholar
  25. Junger W (1991) Waterstriders (Gerris paludum F) compensate for drift with a discontinuously working visual position servo. J Comp Physiol A 169(5):633–639Google Scholar
  26. Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, M. bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83(1):1–12PubMedCrossRefGoogle Scholar
  27. Lent DD, Graham P, Collett TS (2009) A motor component to the memories of habitual foraging routes in wood ants. Curr Biol 19(2):115–121PubMedCrossRefGoogle Scholar
  28. Lent DD, Graham P, Collett TS (2010) Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features. Proc Natl Acad Sci USA 107(37):16348–16353PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lent DD, Graham P, Collett TS (2013) Visual scene perception in navigating wood ants. Curr Biol 23(8):684–690PubMedCrossRefGoogle Scholar
  30. Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23(5):944–954CrossRefGoogle Scholar
  31. Möller R (2012) A model of ant navigation based on visual prediction. J Theor Biol 305:118–130PubMedCrossRefGoogle Scholar
  32. Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20(15):1368–1371PubMedCrossRefGoogle Scholar
  33. Narendra A (2007) Homing strategies of the Australian desert ant M. bagoti. II. Interaction of the path integrator with visual cue information. J Exp Biol 210(12):2212CrossRefGoogle Scholar
  34. Narendra A, Si A, Sulikowski D, Cheng K (2007) Learning, retention and coding of nest-associated visual cues by the Australian desert ant, M. bagoti. Behav Ecol Sociobiol 61(10):1543–1553CrossRefGoogle Scholar
  35. Narendra A, Cheng K, Sulikowski D, Wehner R (2008) Search strategies of ants in landmark-rich habitats. J Comp Physiol A 194(11):929–938CrossRefGoogle Scholar
  36. Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683PubMedCrossRefGoogle Scholar
  37. Nicholson DJ, Judd SPD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (F. rufa). J Exp Biol 202(13):1831–1838PubMedGoogle Scholar
  38. Philippides A, Baddeley B, Cheng K, Graham P (2011) How might ants use panoramic views for route navigation? J Exp Biol 214(3):445–451PubMedCrossRefGoogle Scholar
  39. Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214(3):363–370PubMedCrossRefGoogle Scholar
  40. Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, M. bagoti. Anim Behav 81(5):1031–1038CrossRefGoogle Scholar
  41. Schultheiss P, Wystrach A, Legge ELG, Cheng K (2013) Information content of visual scenes influences systematic search of desert ants. J Exp Biol 216(4):742–749PubMedCrossRefGoogle Scholar
  42. Schwarz S, Narendra A, Zeil J (2011) The properties of the visual system in the Australian desert ant M. bagoti. Arthropod Struct Dev 40(2):128–134PubMedCrossRefGoogle Scholar
  43. Tarsitano MS, Andrew R (1999) Scanning and route selection in the jumping spider Portia labiata. Anim Behav 58:255–265PubMedCrossRefGoogle Scholar
  44. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189(8):579–588CrossRefGoogle Scholar
  45. Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96Google Scholar
  46. Wehner R, Räber F (1979) Visual Spatial memory in desert ants, Cataglyphis bicolor. Experientia 35:1569–1571CrossRefGoogle Scholar
  47. Wehner R, Srinivasan MV (1981) Searching behavior of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142(3):315–338CrossRefGoogle Scholar
  48. Wehner R, Fukushi T, Wehner S (1992) Rotatory components of movement in high speed desert ants, Cataglyphis bombycina. In: Paper presented at the 20th Göttingen Neurobiology Conference, GöttingenGoogle Scholar
  49. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  50. Wei CA, Rafalko SL, Dyer FC (2002) Deciding to learn: modulation of learning flights in honeybees, Apis mellifera. J Comp Physiol A 188(9):725–737CrossRefGoogle Scholar
  51. Wystrach A, Beugnon G, Cheng K (2011a) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21PubMedCentralPubMedCrossRefGoogle Scholar
  52. Wystrach A, Schwarz S, Schultheiss P, Beugnon G, Cheng K (2011b) Views, landmarks, and routes: how do desert ants negotiate an obstacle course? J Comp Physiol A 197(2):167–179CrossRefGoogle Scholar
  53. Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215(1):44–55PubMedCrossRefGoogle Scholar
  54. Wystrach A, Mangan M, Philippides A, Graham P (2013) Snapshots in ants? New interpretations of paradigmatic experiments. J Exp Biol 216(10):1766–1770PubMedCrossRefGoogle Scholar
  55. Zeil J (1993) Orientation flights of solitary wasps (Cerceris, Sphecidae, Hymenoptera) 2: similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172(2):207–222CrossRefGoogle Scholar
  56. Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22(2):285–293PubMedCrossRefGoogle Scholar
  57. Zeil J, Hofmann MI, Chahl JS (2003) The catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A 20:450–469CrossRefGoogle Scholar
  58. Zeil J, Narendra A, Stürzl W (2014) Looking and homing: how displaced ants decide where to go. Phil Trans R Soc 369(1636):20130034CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Antoine Wystrach
    • 1
    • 2
  • Andrew Philippides
    • 2
  • Amandine Aurejac
    • 3
  • Ken Cheng
    • 1
  • Paul Graham
    • 2
  1. 1.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  2. 2.Centre for Computational Neuroscience and RoboticsUniversity of SussexBrightonUK
  3. 3.Centre de Recherche sur la Cognition AnimaleUniversité Paul SabatierToulouseFrance

Personalised recommendations