Journal of Comparative Physiology A

, Volume 200, Issue 6, pp 591–601 | Cite as

Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti

  • Antoine Wystrach
  • Sebastian Schwarz
  • Patrick Schultheiss
  • Alice Baniel
  • Ken Cheng
Original Paper


The Central Australian desert ant Melophorus bagoti is known to use celestial cues for compass orientation. We manipulated the available celestial cues for compass orientation for ants that had arrived at a feeder, were captured and then released at a distant test site that had no useful terrestrial panoramic cues. When tested in an enclosed transparent box that blocked some or most of the ultraviolet light, the ants were still well oriented homewards. The ants were again significantly oriented homewards when most of the ultraviolet light as well as the sun was blocked, or when the box was covered with tracing paper that eliminated the pattern of polarised light, although in the latter case, their headings were more scattered than in control (full-cue) conditions. When the position of the sun was reflected 180° by a mirror, the ants headed off in an intermediate direction between the dictates of the sun and the dictates of unrotated cues. We conclude that M. bagoti uses all available celestial compass cues, including the pattern of polarised light, the position of the sun, and spectral and intensity gradients. They average multiple cues in a weighted fashion when these cues conflict.


Desert ant Compass Polarised light Ultraviolet Navigation 



We thank two anonymous reviewers for helpful comments, Martin Whiting for providing us photospectrometric measurements, the Centre for Appropriate Technology for letting us work on their grounds and for providing storage space, and the CSIRO at Alice Springs for letting us rent a house and providing some administrative help. Funding for the work came from the Australian Research Council (Discovery Project Grant DP110100608) and from Macquarie University (postgraduate awards to AW, SS, PS).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

359_2014_899_MOESM1_ESM.doc (32 kb)
Supplemental Fig. 1. The distribution of ants’ headings in the high UV-blocking box (left) and in the high UV-blocking box with a portion of the sky not containing the sun mirrored (right). The red arrows show the mean vector, with the rim of the circles indicating a vector length of 1. The centre of the small open circles indicate the 95 % confidence intervals about the mean direction. The black triangle indicates the feeder-nest direction. The numbers outside the histograms indicate the number of ants represented by a bar reaching the rim of the circle. The numbers inside the histograms (n’s) indicate the number of ants tested in each condition (DOC 32 kb)
359_2014_899_MOESM2_ESM.eps (229 kb)
Supplementary material 2 (EPS 229 kb)


  1. Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262PubMedCrossRefGoogle Scholar
  2. Batschelet E (1981) Circular statistics in biology. Academic Press, New YorkGoogle Scholar
  3. Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853PubMedCrossRefGoogle Scholar
  4. Cheng K (2012) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Zentall TR, Wasserman EA (eds) The Oxford handbook of comparative cognition. Oxford University Press, Oxford, pp 347–365Google Scholar
  5. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133:625–637PubMedCrossRefGoogle Scholar
  6. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Process 80:261–268CrossRefGoogle Scholar
  7. Cheng K, Middleton EJT, Wehner R (2012) Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J Exp Biol 215:3169–3174PubMedCrossRefGoogle Scholar
  8. Christian KA, Morton SR (1992) Extreme thermophilia in a Central Australian ant, Melophorus bagoti. Physiol Zool 65:885–905Google Scholar
  9. Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932PubMedCrossRefGoogle Scholar
  10. Collett TS, Collett M (2000) Path integration in insects. Curr Opinion Neurobiol 10:757–762CrossRefGoogle Scholar
  11. Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034PubMedCrossRefGoogle Scholar
  12. Etienne AS, Jeffery KJ (2004) Path Integration in mammals. Hippocampus 14:180–192PubMedCrossRefGoogle Scholar
  13. Etienne AS, Maurer R, Berlie J, Reverdin B, Rowe T, Georgakopoulos J, Seguinot V (1998) Navigation through vector addition. Nature 396:161–164PubMedCrossRefGoogle Scholar
  14. Fent K, Wehner R (1985) Ocelli: a celestial compass in the desert ant Cataglyphis. Science 228:192–194PubMedCrossRefGoogle Scholar
  15. Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory Monarch butterflies. Neuron 69:345–358PubMedCrossRefGoogle Scholar
  16. Körding KP (2007) Decision theory: what “should” the nervous system do? Science 318:606–610PubMedCrossRefGoogle Scholar
  17. Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS ONE 2:e943PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lebhardt F, Koch J, Ronacher B (2012) The polarization compass dominates over idiothetic cues in path integration of desert ants. J Exp Biol 215:526–535PubMedCrossRefGoogle Scholar
  19. Lebhardt F, Ronacher B (2014) Interactions of the polarization and the sun compass in path integration of desert ants. J Comp Physiol A. doi: 10.1007/s00359-00013-00871-00351 Google Scholar
  20. Merkle T, Wehner R (2009) Repeated training does not improve the path integrator in desert ants. Behav Ecol Sociobiol 63:391–402CrossRefGoogle Scholar
  21. Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol A 137:63–71CrossRefGoogle Scholar
  22. Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371PubMedCrossRefGoogle Scholar
  23. Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Austr J Zool 53:301–311CrossRefGoogle Scholar
  24. Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti I. Proportional path integration takes the ant half-way home. J Exp Biol 210:1798–1803PubMedCrossRefGoogle Scholar
  25. Narendra A, Cheng K, Wehner R (2007) Acquiring, retaining and integrating memories of the outbound distance in the Australian desert ant Melophorus bagoti. J Exp Biol 210:570–577PubMedCrossRefGoogle Scholar
  26. Pfeiffer K, Homberg U (2007) Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 17:960–965PubMedCrossRefGoogle Scholar
  27. Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370PubMedCrossRefGoogle Scholar
  28. Ronacher B (2008) Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol News 11:53–62Google Scholar
  29. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131CrossRefGoogle Scholar
  30. Santschi F (1911) Sur le mécanisme de l’orientation chez les fourmis. Revue Suisse Zool 19:303–338Google Scholar
  31. Santschi F (1913) Comment s’orientent les fourmis. Revue Suisse Zool 21:347–426Google Scholar
  32. Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038CrossRefGoogle Scholar
  33. Schultheiss P, Nooten SS (2013) Foraging patterns and strategies in an Australian desert ant. Austral Ecol 38:942–951. doi: 10.1111/aec.12037 CrossRefGoogle Scholar
  34. Schwarz S, Albert L, Wystrach A, Cheng K (2011a) Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. J Exp Biol 214:901–906PubMedCrossRefGoogle Scholar
  35. Schwarz S, Wystrach A, Cheng K (2011b) A new navigational mechanism mediated by ant ocelli. Biol Lett 7:856–858PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ugolini A, Galanti G, Mercatelli L (2013) Do sandhoppers use the skylight polarization as a compass cue? Anim Behav 86:427–434CrossRefGoogle Scholar
  37. von Frisch K (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften 35:38–43CrossRefGoogle Scholar
  38. von Frisch K (1949) Die polarisation des himmelslichtes als orientierender faktor bei den Tänzen der Bienen. Experientia 5:142–148PubMedCrossRefGoogle Scholar
  39. von Frisch K (1967) The dance language and orientation of bees. Belknap, CambridgeGoogle Scholar
  40. von Saint Paul U (1982) Do geese use path integration for walking home? In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 298–307CrossRefGoogle Scholar
  41. Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritte Zool 39:103–143Google Scholar
  42. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser Verlag, Basel, pp 145–185CrossRefGoogle Scholar
  43. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588CrossRefGoogle Scholar
  44. Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96Google Scholar
  45. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Nat Acad Sci USA 103:12575–12579PubMedCentralPubMedCrossRefGoogle Scholar
  46. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30CrossRefGoogle Scholar
  47. Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79PubMedCrossRefGoogle Scholar
  48. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967PubMedCrossRefGoogle Scholar
  49. Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207PubMedCrossRefGoogle Scholar
  50. Wolf H (2011) Odometry and insect navigation. J Exp Biol 214:1629–1641PubMedCrossRefGoogle Scholar
  51. Wystrach A, Schwarz S (2013) Ants use a predictive mechanism to compensate for passive displacements by wind. Curr Biol 23:R1083–R1085. doi: 10.1016/j.cub.2013.1010.1072 PubMedCrossRefGoogle Scholar
  52. Wystrach A, Schwarz S, Baniel A, Cheng K (2013) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B-Biol Sci 280:20131677CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Antoine Wystrach
    • 1
    • 2
  • Sebastian Schwarz
    • 1
    • 3
  • Patrick Schultheiss
    • 1
  • Alice Baniel
    • 1
  • Ken Cheng
    • 1
  1. 1.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  2. 2.School of Life SciencesUniversity of SussexBrightonUK
  3. 3.Department of Psychology, Neuroscience and BehaviourMcMaster UniversityHamiltonCanada

Personalised recommendations