Journal of Comparative Physiology A

, Volume 200, Issue 6, pp 435–448 | Cite as

Colour constancy in insects

  • Lars Chittka
  • Samia Faruq
  • Peter Skorupski
  • Annette Werner


Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete ‘discounting’ of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects.


Colour vision Computational colour constancy Flower colour Perception von Kries adaptation 


  1. Arnold SEJ, Chittka L (2012) Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light. J Exp Biol 215:2173–2180PubMedCrossRefGoogle Scholar
  2. Balkenius A, Kelber A (2004) Colour constancy in diurnal and nocturnal hawkmoths. J Exp Biol 207:3307–3316. doi:10.1242/jcb.01158 PubMedCrossRefGoogle Scholar
  3. Bloj MG, Kersten D, Hurlbert AC (1999) Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402:877–879PubMedGoogle Scholar
  4. Brill MH (1995) The relation between the color of the illuminant and the color of the illuminated object––a commentary. Color Res Appl 20:70–72CrossRefGoogle Scholar
  5. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Entomol 46:471–510CrossRefGoogle Scholar
  6. Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310:1–26CrossRefGoogle Scholar
  7. Byrne A, Hilbert DR (2003) Color realism and color science. Behav Brain Sci 26:3–64PubMedGoogle Scholar
  8. Chittka L (1996) Does bee colour vision predate the evolution of flower colour? Naturwiss 83:136–138CrossRefGoogle Scholar
  9. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colors and the insect pollinators’ color vision systems. J Comp Physiol A 171:171–181CrossRefGoogle Scholar
  10. Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008PubMedCrossRefGoogle Scholar
  11. Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymentoptera. J Comp Physiol A 170:545–563PubMedGoogle Scholar
  12. Chittka L, Stelzer RJ, Stanewsky R (2013) Daily changes in ultraviolet light levels can synchronize the circadian clock of bumblebees (Bombus terrestris). Chronobiol Int 30:434–442PubMedCrossRefGoogle Scholar
  13. Clarke S, Walsh V, Schoppig A, Assal G, Cowey A (1998) Colour constancy impairments in patients with lesions of the prestriate cortex. Exp Brain Res 123:154–158PubMedCrossRefGoogle Scholar
  14. Daw N (1968) Colour coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J Physiol 197:567–592PubMedCentralPubMedGoogle Scholar
  15. de Souza J, Hertel H, Ventura DF, Menzel R (1992) Response properties of stained monopolar cells in the honeybee lamina. J Comp Physiol A 170:267–274CrossRefGoogle Scholar
  16. Döring TF, Chittka L (2007) Visual ecology of aphids––a critical review on the role of colours in host finding. Arthropod Plant Interact 1:3–16CrossRefGoogle Scholar
  17. Dyer AG (1998) The colour of flowers in spectrally variable illumination and insect pollinator vision. J Comp Physiol A 183:203–212CrossRefGoogle Scholar
  18. Dyer AG (1999) Broad spectral sensitivities in the honeybee’s photoreceptors limit colour constancy. J Comp Physiol A 185:445–453CrossRefGoogle Scholar
  19. Dyer AG (2006) Bumblebees directly perceive variations in the spectral quality of illumination. J Comp Physiol A 192:333–338CrossRefGoogle Scholar
  20. Dyer AG, Chittka L (2004) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A 190:105–114CrossRefGoogle Scholar
  21. Ebner M (2007) Color constancy. Wiley-IS&T series in imaging science and technology. John Wiley, ChichesterGoogle Scholar
  22. Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373. doi:10.1002/cne.10355 PubMedCrossRefGoogle Scholar
  23. Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63(1):1–27CrossRefGoogle Scholar
  24. Faruq S, McOwan PW, Chittka L (2013) The biological significance of color constancy: An agent-based model with bees foraging from flowers under varied illumination. J Vis 13. doi:10.1167/13.10.10
  25. Fischbach KF (1979) Simultaneous and successive colour contrast expressed in “slow” phototactic behaviour of walking Drosophila melanogaster. J Comp Physiol 130:161–171CrossRefGoogle Scholar
  26. Foster DH, Nascimento SMC (1994) Relational color constancy from invariant cone-excitation ratios. Proc R Soc B 257:115–121. doi:10.1098/rspb.1994.0103 PubMedCrossRefGoogle Scholar
  27. Gegenfurtner KR, Kiper DC (2003) Color vision. Annu Rev Neurosci 26:181–206PubMedCrossRefGoogle Scholar
  28. Gonzalez RC, Wintz PA (1977) Digital image processing. In: Applied mathematics and computation no. 13. Advanced Book Program. Addison-Wesley Pub. Co., ReadingGoogle Scholar
  29. Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc B 266:1711–1716PubMedCentralCrossRefGoogle Scholar
  30. Helson H (1964) Adaptation-level theory. Harper & Row, New YorkGoogle Scholar
  31. Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231CrossRefGoogle Scholar
  32. Hertel H, Maronde U (1987) The physiology and morphology of centrally projecting visual interneurons in the honeybee brain. J Exp Biol 133:301–315Google Scholar
  33. Hilbert D (1992) What is color vision? Philos Stud 68:351–370CrossRefGoogle Scholar
  34. Hurlbert AC (1998) Computational models of colour constancy. In: V. Walsh JK (ed) Perceptual constancy: why things look as they do. Cambridge University Press, CambridgeGoogle Scholar
  35. Ives HE (1912) The relation between the color of the illuminant and the color of the illuminated object. Trans Illumin Eng Soc 7:62–72Google Scholar
  36. Jameson D, Hurvich LM (1989) Essay concerning color constancy. Ann Rev Psychol 40:1–22CrossRefGoogle Scholar
  37. Kelber A, Balkenius A, Warrant EJ (2002) Scotopic colour vision in nocturnal hawkmoths. Nature 419:922–925PubMedCrossRefGoogle Scholar
  38. Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53CrossRefGoogle Scholar
  39. Kinoshita M, Arikawa K (2000) Colour constancy of the swallowtail butterfly Papilio xuthus. J Exp Biol 203:3521–3530PubMedGoogle Scholar
  40. Kühn A (1927) Über den Farbensinn der Bienen. Z Vergl Physiol 5:762–800CrossRefGoogle Scholar
  41. Land EH (1977) The retinex theory of color vision. Sci Am 237:108–128PubMedCrossRefGoogle Scholar
  42. Land EH (1986) Recent advances in retinex theory. Vis Res 26:7–21PubMedCrossRefGoogle Scholar
  43. Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61:1–11PubMedCrossRefGoogle Scholar
  44. Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch C 36:910–912PubMedGoogle Scholar
  45. Laughlin SB (1989) The role of sensory adaptation in the retina. J Exp Biol 146:39–62PubMedGoogle Scholar
  46. Lotto RB, Chittka L (2005) Seeing the light: illumination as a contextual cue to color choice behavior in bumblebees. Proc Natl Acad Sci USA 102:3852–3856PubMedCentralPubMedCrossRefGoogle Scholar
  47. Lotto RB, Wicklein M (2005) Bees encode behaviorally significant spectral relationships in complex scenes to resolve stimulus ambiguity. Proc Natl Acad Sci USA 102:16870–16874. doi:10.1073/pnas.0503773102 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489CrossRefGoogle Scholar
  49. Maloney LT (1984) Computational approaches to color constancy. PhD Dissertation, Stanford UniversityGoogle Scholar
  50. Maloney LT, Wandall B (1986) Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am 3:29–33CrossRefGoogle Scholar
  51. Mather G (2006) Foundations of Perception. Psychology Press, HoveGoogle Scholar
  52. Mazokhin-Porshnyakov GA (1966) Recognition of coloured objects by insects. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon Press, Oxford, pp 163–170Google Scholar
  53. Mazokhin-Porshnyakov GA (1969) Insect vision. Plenum Press, New York (trans: Masironi R, Masironi L)Google Scholar
  54. Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) The perception of colour, vol 6., Vision and visual dysfunctionMacmillan Press, London, pp 262–293Google Scholar
  55. Michael CR (1978) Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. J Neurophysiol 41:1233–1249PubMedGoogle Scholar
  56. Moericke V (1950) Ueber das Farbensehen der Pfirsichblattlaus (Myzodes persicae Sulz.). Z Tierpsychol 7(2):265–274CrossRefGoogle Scholar
  57. Mota T, Gronenberg W, Giurfa M, Sandoz J-C (2013) Chromatic processing in the anterior optic tubercle of the honey bee brain. J Neurosci 33:4–16PubMedCrossRefGoogle Scholar
  58. Nascimento SMC, Foster DH (1997) Detecting natural changes of cone-excitation ratios in simple and complex coloured images. Proc R Soc B-Biol Sci 264(1386):1395-1402CrossRefGoogle Scholar
  59. Neumeyer C (1980) Simultaneous color contrast in the honey bee. J Comp Physiol 139:165–176CrossRefGoogle Scholar
  60. Neumeyer C (1981) Chromatic adaptation in the honeybee: successive color contrast and color constancy. J Comp Physiol 144:543–553CrossRefGoogle Scholar
  61. Neumeyer C (1991) Evolution of colour vision. In: Cronly-Dillon J (ed) Vision and visual dysfunction, vol 2. Macmillan Press, Houndsmills, pp 284–305Google Scholar
  62. Neumeyer C (1998) Comparative aspects of color constancy. In: Walsh V, Kulikowski J (eds) Perceptual Constancy. Cambridge University Press, CambridgeGoogle Scholar
  63. Osorio D, Marshall NJ, Cronin TW (1997) Stomatopod photoreceptor spectral tuning as an adaptation for color constancy in water. Vis Res 37:3299–3309PubMedCrossRefGoogle Scholar
  64. Paulk AC, Dacks AM, Phillips-Portillo J, Fellous J-M, Gronenberg W (2009a) Visual processing in the central bee brain. J Neurosci 29:9987–9999PubMedCentralPubMedCrossRefGoogle Scholar
  65. Paulk AC, Dacks AM, Gronenberg W (2009b) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456. doi:10.1002/cne.21993 PubMedCrossRefGoogle Scholar
  66. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40PubMedCrossRefGoogle Scholar
  67. Ribi WA (1975) The neurons of the first optic ganglion of the bee (Apis mellifera). Adv Anat Embryol Cell Biol 50:1–43PubMedGoogle Scholar
  68. Riehle A (1981) Color opponent neurons of the honeybee in a heterochromatic flicker test. J Comp Physiol 142:81–88CrossRefGoogle Scholar
  69. Rushton WA (1972) Pigments and signals in colour vision. J Physiol 220:1–31Google Scholar
  70. Skorupski P, Chittka L (2011) Is colour cognitive? Opt Laser Technol 43:251–260CrossRefGoogle Scholar
  71. Smithson HE (2005) Sensory, computational and cognitive components of human colour constancy. Phil Trans R Soc B 360:1329–1346PubMedCentralPubMedCrossRefGoogle Scholar
  72. von Campenhausen C (1986) Photoreceptors, lightness constancy and color vision. Naturwiss 73:674–675CrossRefGoogle Scholar
  73. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jb (Physiol) 37:1–238Google Scholar
  74. von Helmholtz H (1896) Handbuch der physiologischen Optik, vol 2. Voss, HamburgGoogle Scholar
  75. von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472CrossRefGoogle Scholar
  76. von Holst E (1957) Aktive Leistungen der menschlichen Gesichtswahrnehmung. Studium Generale 10:231–241Google Scholar
  77. von Kries J (1905) Die Gesichtsempfindungen. In: Nagel W (ed) Handbuch der Physiologie des Menschen, vol 3. Vieweg, Braunschweig, pp 109–282Google Scholar
  78. Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229CrossRefGoogle Scholar
  79. Werner A (1990) Farbkonstanz bei der Honigbiene, Apis mellifera. Untersuchung der zugrundeliegenden Mechanismen kontextbezogener Farbkodierung, sowie eine Studie der Farbkonstanzleistung des Menschen unter identischen Versuchsbedingungen. PhD Dissertation, Free University of BerlinGoogle Scholar
  80. Werner A, Menzel R, Wehrhahn C (1988) Color constancy in the honeybee. J Neurosci 8:156–159PubMedGoogle Scholar
  81. Werner A, Smith V, Pokorny J, Kremers J, Greenlee M (2005) Psychophysical correlates of identified physiological processes in the human visual system. In: Kremer JP (ed) The Primate visual system. Wiley & Sons, New York, pp 311–349Google Scholar
  82. Wicklein M, Lotto RB (2006) Bees use relational learning rules in colour learning tasks. Perception 35:140–141Google Scholar
  83. Wolff EK, Bogomolni RA, Scherrer P, Hess B, Stoeckenius W (1986) Color discrimination in halobacteria: spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proc Natl Acad Sci USA 83:7272–7276PubMedCentralPubMedCrossRefGoogle Scholar
  84. Worthey JA, Brill MH (1986) Heuristic analysis of von Kries color constancy. J Opt Soc Am A 3:1708–1712PubMedCrossRefGoogle Scholar
  85. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, vol 2. Wiley, New YorkGoogle Scholar
  86. Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925PubMedCrossRefGoogle Scholar
  87. Zaidi Q, Spehar B, DeBonet J (1997) Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes. J Opt Soc Am A 14:2608–2621CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lars Chittka
    • 1
  • Samia Faruq
    • 1
  • Peter Skorupski
    • 2
  • Annette Werner
    • 3
  1. 1.Biological and Experimental Psychology, School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  2. 2.Division of Biomedical SciencesSt George’s, University of LondonLondonUK
  3. 3.Centre for Ophthalmology, Institute for Ophthalmic ResearchEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations