Journal of Comparative Physiology A

, Volume 200, Issue 6, pp 575–589 | Cite as

Integration of polarization and chromatic cues in the insect sky compass

  • Basil el Jundi
  • Keram Pfeiffer
  • Stanley Heinze
  • Uwe Homberg
Review

Abstract

Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.

Keywords

Polarization vision Sky compass orientation Color vision Insect brain Central complex 

Notes

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (HO 950/16-1, 16-2 and 16-3) to UH.

References

  1. Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128PubMedCrossRefGoogle Scholar
  2. Brines ML, Gould JL (1979) Bees have rules. Science 206:571–573PubMedCrossRefGoogle Scholar
  3. Coemans MAJM, Vos Hzn JJ, Nuboer JFW (1994) The relation between celestial colour gradients and the position of the sun, with regard to the sun compass. Vis Res 34:1461–1470PubMedCrossRefGoogle Scholar
  4. Dacke M, Nordström P, Scholtz CH, Warrant E (2002) A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum. J Comp Physiol A 188:211–216CrossRefGoogle Scholar
  5. Dacke M, el Jundi B, Smolka J, Byrne M, Baird E (2014) The role of the sun in the celestial compass of dung beetles. Philos Trans R Soc B 369:20130036CrossRefGoogle Scholar
  6. Edrich W, Neumeyer C, von Helversen O (1979) “Anti-sun orientation” of bees with regard to a field of ultraviolet light. J Comp Physiol 134:151–157CrossRefGoogle Scholar
  7. el Jundi B, Homberg U (2010) Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J Insect Physiol 56:971–979PubMedCrossRefGoogle Scholar
  8. el Jundi B, Homberg U (2012) Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. J Neurophysiol 108:1695–1710PubMedCrossRefGoogle Scholar
  9. el Jundi B, Heinze S, Kurylas A, Lenschow C, Rohlfing R, Homberg U (2010) The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Front Syst Neurosci 3:21PubMedCentralPubMedGoogle Scholar
  10. el Jundi B, Pfeiffer K, Homberg U (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS One 6:e27855PubMedCentralPubMedCrossRefGoogle Scholar
  11. el Jundi B, Smolka J, Baird E, Byrne M, Dacke M (2014) Diurnal dung beetles use the intensity gradient and polarization pattern of the sky for orientation. J Exp Biol (in revision)Google Scholar
  12. Frost BJ, Mouritsen H (2006) The neural mechanisms of long distance animal navigation. Curr Opin Neurobiol 16:481–488Google Scholar
  13. Gould JL (1998) Sensory bases of navigation. Curr Biol 8:R731–R738PubMedCrossRefGoogle Scholar
  14. Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997PubMedCrossRefGoogle Scholar
  15. Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478PubMedCrossRefGoogle Scholar
  16. Heinze S, Homberg U (2009) Linking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex. J Neurosci 29:4911–4921PubMedCrossRefGoogle Scholar
  17. Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–358PubMedCrossRefGoogle Scholar
  18. Heinze S, Gotthardt S, Homberg U (2009) Transformation of polarized light information in the central complex of the locust. J Neurosci 29:11783–11793PubMedCrossRefGoogle Scholar
  19. Heinze S, Florman J, Asokaraj S, el Jundi B, Reppert SM (2013) Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J Comp Neurol 521:267–298PubMedCrossRefGoogle Scholar
  20. Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594PubMedCrossRefGoogle Scholar
  21. Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163PubMedCentralPubMedCrossRefGoogle Scholar
  22. Homberg U (1985) Interneurons of the central complex in the bee brain (Apis mellifera, L.). J Insect Physiol 31:251–264CrossRefGoogle Scholar
  23. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280PubMedCrossRefGoogle Scholar
  24. Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346PubMedCrossRefGoogle Scholar
  25. Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430PubMedCrossRefGoogle Scholar
  26. Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc B 366:680–687CrossRefGoogle Scholar
  27. Kinoshita M, Pfeiffer K, Homberg U (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J Exp Biol 210:1350–1361PubMedCrossRefGoogle Scholar
  28. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J Comp Physiol A 141:19–30CrossRefGoogle Scholar
  29. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7CrossRefGoogle Scholar
  30. Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437CrossRefGoogle Scholar
  31. Labhart T (1996) How polarization-sensitive interneurons of crickets perform at low degrees of polarization. J Exp Biol 199:1467–1475PubMedGoogle Scholar
  32. Labhart T (2000) Polarization-sensitive interneurons in the optic lobe of the desert ant Cataglyphis bicolor. Naturwissenschaften 87:133–136PubMedCrossRefGoogle Scholar
  33. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379PubMedCrossRefGoogle Scholar
  34. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296CrossRefGoogle Scholar
  35. Labhart T, Meyer EP, Schenker L (1992) Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell Tissue Res 268:419–429PubMedCrossRefGoogle Scholar
  36. Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurons of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430PubMedGoogle Scholar
  37. Labhart T, Baumann F, Bernard GD (2009) Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta. Cell Tissue Res 338:391–400PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lin C-Y, Chuang C-C, Hua T-E, Chen C-C, Dickson BJ, Greenspan RJ, Chiang A-S (2013) A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep 3:1739–1753PubMedCrossRefGoogle Scholar
  39. Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol 439:193–207PubMedCrossRefGoogle Scholar
  40. Pfeiffer K, Homberg U (2007) Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 17:960–965PubMedCrossRefGoogle Scholar
  41. Pfeiffer K, Kinoshita M (2012) Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). J Comp Neurol 520:212–229PubMedCrossRefGoogle Scholar
  42. Pfeiffer K, Kinoshita M, Homberg U (2005) Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neurophysiol 94:3903–3915PubMedCrossRefGoogle Scholar
  43. Pfeiffer K, Negrello M, Homberg U (2011) Conditional perception under stimulus ambiguity: polarization- and azimuth-sensitive neurons in the locust brain are inhibited by low degrees of polarization. J Neurophysiol 105:28–35PubMedCrossRefGoogle Scholar
  44. Reppert SM, Zhu H, White RH (2004) Polarized light helps monarch butterflies navigate. Curr Biol 14:155–158PubMedCrossRefGoogle Scholar
  45. Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc B 366:627–637CrossRefGoogle Scholar
  46. Rosner R, Homberg U (2013) Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain. J Neurosci 33:8172CrossRefGoogle Scholar
  47. Rossel S, Wehner R (1984) Celestial orientation in bees: the use of spectral cues. J Comp Physiol 155:605–613CrossRefGoogle Scholar
  48. Sakura M, Lambrinos D, Labhart T (2008) Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J Neurophysiol 99:667–682PubMedCrossRefGoogle Scholar
  49. Seelig JD, Jayaraman V (2013) Feature detection and orientation tuning in the Drosophila central complex. Nature 503:262–266PubMedGoogle Scholar
  50. Stalleicken J, Mukhida M, Labhart T, Wehner R, Frost B, Mouritsen H (2005) Do monarch butterflies use polarized skylight for migratory orientation? J Exp Biol 208:2399–2408PubMedCrossRefGoogle Scholar
  51. Stalleicken J, Labhart T, Mouritsen H (2006) Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A 192:321–331CrossRefGoogle Scholar
  52. Träger U, Homberg U (2011) Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J Neurosci 31:2238–2247PubMedCrossRefGoogle Scholar
  53. Träger U, Wagner R, Bausenwein B, Homberg U (2008) A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J Comp Neurol 506:288–300PubMedCrossRefGoogle Scholar
  54. Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125PubMedGoogle Scholar
  55. von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148PubMedCrossRefGoogle Scholar
  56. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, BerlinCrossRefGoogle Scholar
  57. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185CrossRefGoogle Scholar
  58. Wehner R, Bernard GD (1993) Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci USA 90:4132–4135PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci 103:12575–12579PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245CrossRefGoogle Scholar
  61. Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Basil el Jundi
    • 2
  • Keram Pfeiffer
    • 1
  • Stanley Heinze
    • 2
  • Uwe Homberg
    • 1
  1. 1.Faculty of Biology, Animal PhysiologyPhilipps-University of MarburgMarburgGermany
  2. 2.Vision Group, Department of BiologyLund UniversityLundSweden

Personalised recommendations