Journal of Comparative Physiology A

, Volume 200, Issue 3, pp 183–195 | Cite as

Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee

  • Anja Froese
  • Paul Szyszka
  • Randolf Menzel
Original Paper


Kenyon cells, the intrinsic neurons of the insect mushroom body, have the intriguing property of responding in a sparse way to odorants. Sparse neuronal codes are often invariant to changes in stimulus intensity and duration, and sparse coding often depends on global inhibition. We tested if this is the case for honeybees’ Kenyon cells, too, and used in vivo Ca2+ imaging to record their responses to different odorant concentrations. Kenyon cells responded not only to the onset of odorant stimuli (ON responses), but also to their termination (OFF responses). Both, ON and OFF responses increased with increasing odorant concentration. ON responses were phasic and invariant to the duration of odorant stimuli, while OFF responses increased with increasing odorant duration. Pharmacological blocking of GABA receptors in the brain revealed that ionotropic GABAA and metabotropic GABAB receptors attenuate Kenyon cells’ ON responses without changing their OFF responses. Ionotropic GABAA receptors attenuated Kenyon cell ON responses more strongly than metabotropic GABAB receptors. However, the response dynamic, temporal resolution and paired-pulse depression did not depend on GABAA transmission. These data are discussed in the context of mechanisms leading to sparse coding in Kenyon cells.


Kenyon cells Ca2+ imaging Olfactory coding GABA receptors OFF responses 



γ-Aminobutyric acid


Clawed Kenyon cell


Mushroom body


Protocerebral-calycal tract


Bicuculline methiodide






Region of interest



We are grateful to Drs. Silke Sachse, Melanie Haehnel and Nobuhiro Yamagata for their help and advice during the experiments. The work was supported by a grant of the Deutsche Forschungsgemeinschaft (Me 365/31-1).


  1. Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383PubMedCrossRefGoogle Scholar
  2. Asay MJ, Boyd SK (2006) Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana). Brain Res 1094:76–85PubMedCrossRefGoogle Scholar
  3. Assisi C, Stopfer M, Laurent G, Bazhenov M (2007) Adaptive regulation of sparseness by feedforward inhibition. Nat Neurosci 10:1176–1184PubMedCrossRefGoogle Scholar
  4. Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A 191:823–836CrossRefGoogle Scholar
  5. Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Techniq 45:174–183CrossRefGoogle Scholar
  6. Bicker G, Schäfer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397PubMedCrossRefGoogle Scholar
  7. Chou YH, Spletter ML, Yaksi E, Leong JC, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13:439–449PubMedCentralPubMedCrossRefGoogle Scholar
  8. Choudhary AF, Laycock I, Wright GA (2012) gamma-Aminobutyric acid receptor A-mediated inhibition in the honeybee’s antennal lobe is necessary for the formation of configural olfactory percepts. Eur J Neurosci 35:1718–1724PubMedCrossRefGoogle Scholar
  9. Davis RL (1993) Mushroom bodies and Drosophila learning. Neuron 11:1–14PubMedCrossRefGoogle Scholar
  10. Deglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Let 321:13–16CrossRefGoogle Scholar
  11. Demmer H, Kloppenburg P (2009) Intrinsic membrane properties and inhibitory synaptic input of Kenyon cells as mechanisms for sparse coding? J Neurophysiol 102:1538–1550PubMedCrossRefGoogle Scholar
  12. El Hassani AK, Giurfa M, Gauthier M, Armengaud C (2008) Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 90:589–595PubMedCrossRefGoogle Scholar
  13. Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR (2007) gamma-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 505:18–31PubMedCrossRefGoogle Scholar
  14. Farkhooi F, Froese A, Muller E, Menzel R, Nawrot MP (2013) Cellular adaptation facilitates sparse and reliable coding in sensory pathways. PLoS Comput Biol 9(10):e1003251PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fonta C, Sun XJ, Masson C (1993) Morphology and spatial-distribution of bee antennal lobe interneurons responsive to odors. Chem Sens 18:101–119CrossRefGoogle Scholar
  16. Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A 190:21–38CrossRefGoogle Scholar
  17. Galizia CG, Joerges J, Kuttner A, Faber T, Menzel R (1997) A semi-in vivo preparation for optical recording of the insect brain. J Neurosci Method 76:61–69CrossRefGoogle Scholar
  18. Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437:335–349PubMedCrossRefGoogle Scholar
  19. Grünewald B (1999a) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J Comp Neurol 404:114–126PubMedCrossRefGoogle Scholar
  20. Grünewald B (1999b) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee Apis mellifera. J Comp Physiol A 185(6):565–576CrossRefGoogle Scholar
  21. Grünewald B, Wersing A (2008) An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J Comp Physiol A 194:329–340CrossRefGoogle Scholar
  22. Haehnel M, Menzel R (2010) Sensory representation and learning-related plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract. Front Syst Neurosci 4:161PubMedCentralPubMedCrossRefGoogle Scholar
  23. Haehnel M, Menzel R (2012) Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera. J Exp Biol 215:559–565PubMedCrossRefGoogle Scholar
  24. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275PubMedCrossRefGoogle Scholar
  25. Honegger KS, Campbell RAA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31:11772–11785PubMedCentralPubMedCrossRefGoogle Scholar
  26. Huang J, Zhang W, Qiao W, Hu A, Wang Z (2010) Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe. Neuron 67:1021–1033PubMedCrossRefGoogle Scholar
  27. Ito I, Ong RCY, Raman B, Stopfer M (2008) Sparse odor representation and olfactory learning. Nat Neurosci 11:1177–1184PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jortner RA, Farivar SS, Laurent G (2007) A simple connectivity scheme for sparse coding in an olfactory system. J Neurosci 27:1659–1669PubMedCrossRefGoogle Scholar
  29. Krofczik S, Menzel R, Nawrot MP (2009) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosc 2:9Google Scholar
  30. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895PubMedCrossRefGoogle Scholar
  31. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297PubMedCrossRefGoogle Scholar
  32. Lei H, Riffell JA, Gage SL, Hildebrand JG (2009) Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J Biol 8:21PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lei Z, Chen K, Li H, Liu H, Guo A (2013) The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. Biochem Biophys Res Comm 436:35–40PubMedCrossRefGoogle Scholar
  34. Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514PubMedCrossRefGoogle Scholar
  35. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768PubMedCrossRefGoogle Scholar
  36. Mobbs PG (1982) The brain of the honeybee Apis mellifera.1. The connections and spatial-organization of the mushroom bodies. Philos T Roy Soc B 298:309–354CrossRefGoogle Scholar
  37. Müller D, Abel R, Brandt R, Zockler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188:359–370CrossRefGoogle Scholar
  38. Murthy M, Fiete I, Laurent G (2008) Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59:1009–1023PubMedCentralPubMedCrossRefGoogle Scholar
  39. Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960PubMedCentralPubMedCrossRefGoogle Scholar
  40. Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:721–725PubMedCentralPubMedCrossRefGoogle Scholar
  41. Pelz C, Gerber B, Menzel R (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J Exp Biol 200:837–847PubMedGoogle Scholar
  42. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365PubMedCrossRefGoogle Scholar
  43. Perez-Orive J, Bazhenov M, Laurent G (2004) Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci 24:6037–6047PubMedCrossRefGoogle Scholar
  44. Root CM, Masuyama K, Green DS, Enell LE, Nassel DR, Lee CH, Wang JW (2008) A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:311–321PubMedCentralPubMedCrossRefGoogle Scholar
  45. Rotte C, Witte J, Blenau W, Baumann O, Walz B (2009) Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands. J Exp Biol 212:126–136PubMedCrossRefGoogle Scholar
  46. Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey-bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465PubMedCrossRefGoogle Scholar
  47. Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117PubMedGoogle Scholar
  48. Sachse S, Galizia CG (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18:2119–2132PubMedCrossRefGoogle Scholar
  49. Sachse S, Peele P, Silbering AF, Gühmann M, Galizia CG (2006) Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe. Front Zool 3:22PubMedCentralPubMedCrossRefGoogle Scholar
  50. Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300PubMedCrossRefGoogle Scholar
  51. Schäfer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–4612PubMedGoogle Scholar
  52. Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS (2010) Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. J Neurophysiol 104:1007–1019PubMedCrossRefGoogle Scholar
  53. Silbering AF, Galizia CG (2007) Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 27:11966–11977PubMedCrossRefGoogle Scholar
  54. Stopfer M (2005) Olfactory coding: inhibition reshapes odor responses. Curr Biol 15:R996–R998PubMedCrossRefGoogle Scholar
  55. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74PubMedCrossRefGoogle Scholar
  56. Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004PubMedCrossRefGoogle Scholar
  57. Strauch M, Ditzen M, Galizia CG (2012) Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 6:71PubMedCentralPubMedCrossRefGoogle Scholar
  58. Strausfeld NJ (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450:4–33PubMedCrossRefGoogle Scholar
  59. Sun XJ, Fonta C, Masson C (1993) Odor quality processing by bee antennal lobe interneurons. Chem Sens 18:355–377CrossRefGoogle Scholar
  60. Szyszka P, Ditzen M, Galkin A, Galizia CG, Menzel R (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J Neurophysiol 94:3303–3313PubMedCrossRefGoogle Scholar
  61. Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2:3PubMedCentralPubMedCrossRefGoogle Scholar
  62. Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations by Drosophila mushroom body neurons. J Neurophysiol 99:734–746PubMedCrossRefGoogle Scholar
  63. Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2 + imaging. J Neurosci 24:6507–6514PubMedCrossRefGoogle Scholar
  64. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079PubMedCrossRefGoogle Scholar
  65. Wright GA, Carlton M, Smith BH (2009) A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav Neurosci 123:36–43PubMedCentralPubMedCrossRefGoogle Scholar
  66. Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R (2009) Differential odor processing in two olfactory pathways in the honeybee. Front Syst Neurosci 3:16PubMedCentralPubMedCrossRefGoogle Scholar
  67. Yarali A, Ehser S, Hapil FZ, Huang J, Gerber B (2009) Odour intensity learning in fruit flies. P Roy Soc B 276:3413–3420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für NeurobiologieFreie Universität BerlinBerlinGermany
  2. 2.Department of Biology, NeurobiologyUniversity of KonstanzConstanceGermany

Personalised recommendations