Advertisement

Journal of Comparative Physiology A

, Volume 199, Issue 10, pp 817–827 | Cite as

Blue colour preference in honeybees distracts visual attention for learning closed shapes

  • Linde MorawetzEmail author
  • Alexander Svoboda
  • Johannes Spaethe
  • Adrian G. Dyer
Original Paper

Abstract

Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees’ ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.

Keywords

Apis mellifera Vision Shape discrimination Blue contrast Conditioning method 

Notes

Acknowledgments

We would like to thank Martin Streinzer for performing the colour measurements and the two anonymous reviewers for their constructive comments of the manuscript. L.M. was recipient of a DOC-fFORTE fellowship of the Austrian Academy of Science at the Department of Integrative Zoology, University of Vienna. A.G.D. was supported by Australian Research Council DP0878968/DP0987989/DP130100015 and the Alexander von Humboldt Foundation.

Supplementary material

359_2013_843_MOESM1_ESM.pdf (143 kb)
Supplementary material 1 (PDF 142 kb)

References

  1. Avargues-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010a) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS ONE 5:e15370PubMedCrossRefGoogle Scholar
  2. Avargues-Weber A, Portelli G, Benard J, Dyer AG, Giurfa M (2010b) Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J Exp Biol 213:593–601PubMedCrossRefGoogle Scholar
  3. Avargues-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Ann Rev Entomol 56:423–443CrossRefGoogle Scholar
  4. Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vis Res 31:1381–1397PubMedCrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effect models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4
  6. Baumgärtner H (1928) Der Formensinn und die Sehschärfe der Bienen. Z Vergl Physiol 7:56–143CrossRefGoogle Scholar
  7. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510PubMedCrossRefGoogle Scholar
  8. Burns JG, Dyer AG (2008) Diversity of speed-accuracy strategies benefits social insects. Curr Biol 18:R953–R954PubMedCrossRefGoogle Scholar
  9. Campan R, Lehrer M (2002) Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. J Exp Biol 205:559–572PubMedGoogle Scholar
  10. Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a gerneralized representation of colour opponency. J Comp Physiol A 170:533–543Google Scholar
  11. Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478Google Scholar
  12. Dyer AG (2012) The mysterious cognitive abilities of bees: why models of visual processing need to consider experience and individual differences in animal performance. J Exp Biol 215:387–395PubMedCrossRefGoogle Scholar
  13. Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumbleebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114CrossRefGoogle Scholar
  14. Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227PubMedCrossRefGoogle Scholar
  15. Dyer AG, Griffiths DW (2012) Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 215:397–404PubMedCrossRefGoogle Scholar
  16. Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557CrossRefGoogle Scholar
  17. Dyer AG, Vuong QC (2008) Insect brains use image interpolation mechanisms to recognise rotated objects. PLoS ONE 3:e4086PubMedCrossRefGoogle Scholar
  18. Dyer AG, Neumeyer C, Chittka L (2005) Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J Exp Biol 208:4709–4714PubMedCrossRefGoogle Scholar
  19. Dyer AG, Whitney H, Arnold S, Glover B, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interact 1:45–55CrossRefGoogle Scholar
  20. Dyer AG, Rosa MGP, Reser DH (2008a) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180–1186PubMedCrossRefGoogle Scholar
  21. Dyer AG, Spaethe J, Prack S (2008b) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627CrossRefGoogle Scholar
  22. Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959PubMedCrossRefGoogle Scholar
  23. Fox J (2003) Effect displays in R for generalised linear models. J Stat Soft 8:1–27Google Scholar
  24. Fox J, Weisberg S (2011) An R Companion to applied regression. Sage, Thousand OaksGoogle Scholar
  25. Giger AD, Srinivasan MV (1996) Pattern recognition in hoenybees: chromatic properties of orientation analysis. J Comp Physiol A 178:763–769CrossRefGoogle Scholar
  26. Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231PubMedCrossRefGoogle Scholar
  27. Giurfa M, Backhaus W, Menzel R (1995a) Color and angular orientation in the discrimination of bilateral symmetric patterns in the honeybee. Naturwissenschaften 82:198–201CrossRefGoogle Scholar
  28. Giurfa M, Núñez J, Chittka L, Menzel R (1995b) Colour preference of flower-naive honeybees. J Comp Physiol A 177:247–259CrossRefGoogle Scholar
  29. Giurfa M, Eichmann B, Menzel R (1996a) Symmetry perception in an insect. Nature 382:458–461PubMedCrossRefGoogle Scholar
  30. Giurfa M, Vorobyev M, Kevan P, Menzel R (1996b) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709CrossRefGoogle Scholar
  31. Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243CrossRefGoogle Scholar
  32. Giurfa M, Hammer M, Stach S, Stollhoff N, Müller-Deisig N, Mizyrycki C (1999) Pattern learning by honeybees: conditioning procedure and recognition strategy. Anim Behav 57:315–324PubMedCrossRefGoogle Scholar
  33. Gould JL, Gould CG (1988) The honey bee. Scientific American Library, New YorkGoogle Scholar
  34. Goulson D, Cruise JL, Sparrow KR, Harris AJ, Park KJ, Tinsley MC, Gilburn AS (2007) Choosing rewarding flowers; perceptual limitations and innate preference influence decision making in bumblebees and honeybees. Behav Ecol Sociobiol 61:1523–1529CrossRefGoogle Scholar
  35. Gumbert A (2000) Color choice by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43CrossRefGoogle Scholar
  36. Hempel de Ibarra N, Giurfa M (2003) Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Anim Behav 66:903–910CrossRefGoogle Scholar
  37. Hempel de Ibarra N, Giurfa M, Vorobyev M (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 187:215–224PubMedCrossRefGoogle Scholar
  38. Hertz M (1929) Die Organisation des optischen Feldes bei der Biene. I. Z Vergl Physiol 8:693–748CrossRefGoogle Scholar
  39. Hill PSM, Wells PH, Wells H (1997) Spontaneous flower constancy and learning in honey bees as a function of colour. Anim Behav 54:615–627PubMedCrossRefGoogle Scholar
  40. Horridge A (2009) Generalization in visual recognition by the honeybee (Apis mellifera). A review and explanation. J Insect Physiol 55:499–511PubMedCrossRefGoogle Scholar
  41. Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee II. Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53CrossRefGoogle Scholar
  42. Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc R Soc B 275:797–802PubMedCrossRefGoogle Scholar
  43. Lehrer M (1999) Dorsoventral asymmetry of colour discrimination in bees. J Comp Physiol A 184:195–206CrossRefGoogle Scholar
  44. Lehrer M, Campan R (2005) Generalization of convex shapes by bees: what are shapes made of? J Exp Biol 208:3233–3247PubMedCrossRefGoogle Scholar
  45. Lunau K (1990) Colour saturation triggers innate reactions to flower signals: flower dummy experiments with bumblebees. J Comp Physiol A 166:827–834CrossRefGoogle Scholar
  46. Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489CrossRefGoogle Scholar
  47. Mazochin-Porshnyakov GA (1969) Die Fähigkeit der Bienen, visuelle Reize zu generalisieren. Z Vergl Physiol 65:15–28CrossRefGoogle Scholar
  48. Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z vergl Physiol 56:22–62CrossRefGoogle Scholar
  49. Menzel R, Giurfa M (2006) Dimensions of cognition in an insect, the honeybee. Behav Cogn Neurosci Rev 5:24–40PubMedCrossRefGoogle Scholar
  50. Møller AP (1995) Bumblebee preference for symmetrical flowers. P Natl Acad Sci USA 92:2288–2292CrossRefGoogle Scholar
  51. Peitsch D, Fietz A, Hertel H, Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40PubMedCrossRefGoogle Scholar
  52. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. http://www.R-project.org/
  53. Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381PubMedCrossRefGoogle Scholar
  54. Reser DH, Wijesekara Witharanage R, Rosa MGP, Dyer AG (2012) Honeybees (Apis mellifera) learn color discriminations via differential conditioning independent of long wavelength (green) photoreceptor modulation. PLoS ONE 7:e48577PubMedCrossRefGoogle Scholar
  55. Ronacher B (1992) Influence of unrewarded stimuli on the classification of visual patterns by honey bees. Ethology 92:205–216CrossRefGoogle Scholar
  56. Ronacher B, Duft U (1996) An image-matching mechanism describes a generalization task in honeybees. J Comp Physiol A 178:803–812CrossRefGoogle Scholar
  57. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. P Natl Acad Sci USA 98:3898–3903CrossRefGoogle Scholar
  58. Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162:159–172CrossRefGoogle Scholar
  59. Stach S, Giurfa M (2005) The influence of training length on generalization of visual feature assemblies in honeybees. Behav Brain Res 161:8–17PubMedCrossRefGoogle Scholar
  60. Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758–761PubMedCrossRefGoogle Scholar
  61. Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370PubMedCrossRefGoogle Scholar
  62. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Z Jb Abt Allg Zool Physiol 35:1–188Google Scholar
  63. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, HarvardGoogle Scholar
  64. von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol A 80:439–472CrossRefGoogle Scholar
  65. Wignall AE, Heiling AM, Cheng K, Herberstein ME (2006) Flower symmetry preferences in honeybees and their crab spider predators. Ethology 112:510–518CrossRefGoogle Scholar
  66. Wu W, Moreno A, Tangen J, Reinhard J (2013) Honeybees can discriminate between Monet and Picasso paintings. J Comp Physiol A 199:45–55CrossRefGoogle Scholar
  67. Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925PubMedCrossRefGoogle Scholar
  68. Zhang SW, Srinivasan MV, Collett T (1995) Convergent processing in honeybee vision: multiple channels for the recognition of shape. P Natl Acad Sci USA 92:3029–3031CrossRefGoogle Scholar
  69. Zhang S, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207:3289–3298PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Linde Morawetz
    • 1
    Email author
  • Alexander Svoboda
    • 1
  • Johannes Spaethe
    • 2
  • Adrian G. Dyer
    • 3
  1. 1.Department of Integrative ZoologyUniversity of ViennaViennaAustria
  2. 2.Behavioral Physiology and Sociobiology, BiozentrumUniversity of WürzburgWürzburgGermany
  3. 3.School of Media and CommunicationRoyal Melbourne Institute of TechnologyMelbourneAustralia

Personalised recommendations