Journal of Comparative Physiology A

, Volume 199, Issue 9, pp 785–797 | Cite as

Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora

  • Jan BieleckiEmail author
  • Gösta Nachman
  • Anders Garm
Original Paper


The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.


Neuromodulation Pacemaker FMRFamide Serotonin Dopamine 



The manuscript was significantly enhanced by thoughtful comments from two anonymous reviewers. JB acknowledges the Lundbeck Foundation Grant No. R103-A9339 and AG the Villum Foundation Grant No. VKR022166.


  1. Anderson PA, Grünert U (1988) Three-dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata. Synapse 2(6):606–613PubMedCrossRefGoogle Scholar
  2. Anderson PAV, Trapido-Rosenthal HG (2009) Physiological and chemical analysis of neurotransmitter candidates at a fast excitatory synapse in the jellyfish Cyanea capillata (Cnidaria, Scyphozoa). Invert Neurosci 9:167–173PubMedCrossRefGoogle Scholar
  3. Briggman KL, Abarbanel HD, Kristan WB Jr (2005) Optical imaging of neuronal populations during decision-making. Science 307(5711):896–901PubMedCrossRefGoogle Scholar
  4. Chung J-M, Spencer AN (1991) Dopamine acts through a D2-like receptor on a jellyfish motor neuron. J Comp Physiol A 169:599–606CrossRefGoogle Scholar
  5. Chung J, Spencer AN (1998) Action of dopamine as inhibitory neuromodulator in jellyfish synapse. J Biochem Mol Biol 31(3):264–268Google Scholar
  6. Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210(4469):492–498PubMedCrossRefGoogle Scholar
  7. Delgado LM, Couve E, Schmachtenberg O (2010) GABA and glutamate immunoreactivity in tentacles of the sea anemone Phymactis papillosa (LESSON 1830). J Morphol 271(7):845–852PubMedGoogle Scholar
  8. DeLong ND, Beenhakker MP, Nusbaum MP (2009) Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system. J Neurophysiol 102(6):3492–3504PubMedCrossRefGoogle Scholar
  9. Friedman AK, Weiss KR (2010) Repetition priming of motoneuronal activity in a small motor network: intercellular and intracellular signaling. J Neurosci 30(26):8906–8919PubMedCrossRefGoogle Scholar
  10. Garm A, Bielecki J (2008) Swim pacemakers in box jellyfish are modulated by the visual input. J Comp Physiol A 194:641–651CrossRefGoogle Scholar
  11. Garm A, Mori S (2009) Multiple photoreceptor systems control the swim pacemaker activity in box jellyfish. J Exp Biol 212:3951–3960PubMedCrossRefGoogle Scholar
  12. Garm A, Ekström P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325(2):333–343PubMedCrossRefGoogle Scholar
  13. Garm A, Coates MM, Gad R, Seymour J (2007a) The lens eye of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A 193:547–557CrossRefGoogle Scholar
  14. Garm A, Poussart Y, Parkefelt L, Ekström P, Nilsson DE (2007b) The ring nerve of the box jellyfish Tripedalia cystophora. Cell Tissue Res 329(1):147–157PubMedCrossRefGoogle Scholar
  15. Garm A, Andersson F, Nilsson D-E (2008) Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vis Res 48:1067–1073CrossRefGoogle Scholar
  16. Garm A, Bielecki J, Petie R, Nilsson DE (2012) Opposite patterns of diurnal activity in the box jellyfish Tripedalia cystophora and Copula sivickisi. Biol Bull 222(1):35–45PubMedGoogle Scholar
  17. Gray GC, Martin VJ, Satterlie RA (2009) Ultrastructure of the retinal synapses in cubozoans. Biol Bull 217(1):35–49PubMedGoogle Scholar
  18. Hui L, Zhang Y, Wang J, Cook A, Ye H, Nusbaum MP, Li L (2011) Discovery and functional study of a novel crustacean tachykinin neuropeptide. ACS Chem Neurosci 2(12):711–722PubMedCrossRefGoogle Scholar
  19. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653PubMedCrossRefGoogle Scholar
  20. Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated review. Comp Biochem Physiol A 146:9–25Google Scholar
  21. Kay JC, Kass-Simon G (2009) Glutamatergic transmission in hydra: NMDA/d-serine affects the electrical activity of the body and tentacles of Hydra vulgaris (Cnidaria, Hydrozoa). Biol Bull 216(2):113–125PubMedGoogle Scholar
  22. Kleinle J, Vogt K, Luscher HR, Muller L, Senn W, Wyler K, Streit J (1996) Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion. Biophys J 71(5):2413–2426PubMedCrossRefGoogle Scholar
  23. Laska G, Hündgen M (1982) Morphologie und Ultrastruktur der Lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108:107–128Google Scholar
  24. Mackie GO (1990) The elementary nervous-system revisited. Am Zool 30(4):907–920Google Scholar
  25. Mackie GO, Anderson PAV, Singla CL (1984) Apparent absence of gap-junctions in 2 classes of cnidaria. Biol Bull 167(1):120–123CrossRefGoogle Scholar
  26. Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15(17):R685–R699PubMedCrossRefGoogle Scholar
  27. Martin VJ (2002) Photoreceptors of cnidarians. Can J Zool 80:1703–1722CrossRefGoogle Scholar
  28. Martin VJ (2004) Photoreceptors of cubozoan jellyfish. Hydrobiology 530(531):135–144CrossRefGoogle Scholar
  29. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. J Vet Pharmacol Ther 31(3):187–199PubMedCrossRefGoogle Scholar
  30. Morgan PT, Perrins R, Lloyd PE, Weiss KR (2000) Intrinsic and extrinsic modulation of a single central pattern generating circuit. J Neurophysiol 84(3):1186–1193PubMedGoogle Scholar
  31. Neubig RR, Cohen JB (1979) Equilibrium binding of [3H]tubocurarine and [3H]acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry 18(24):5464–5475PubMedCrossRefGoogle Scholar
  32. Nusbaum MP, Blitz DM (2012) Neuropeptide modulation of microcircuits. Curr Opin Neurobiol 22(4):592–601PubMedCrossRefGoogle Scholar
  33. O’Connor M, Garm A, Nilsson DE (2009) Structure and optics of the eyes of the box jellyfish Chiropsella bronzie. J Comp Physiol A 195(6):557–569CrossRefGoogle Scholar
  34. O’Connor M, Nilsson DE, Garm A (2010) Temporal properties of the lens eyes of the box jellyfish Tripedalia cystophora. J Comp Physiol A 196(3):213–220CrossRefGoogle Scholar
  35. Parkefelt L, Ekström P (2009) Prominent system of RFamide immunoreactive neurons in the rhopalia of box jellyfish (cnidaria: cubozoa). J Comp Neurol 516:157–165PubMedCrossRefGoogle Scholar
  36. Parkefelt L, Skogh C, Nilsson D-E, Ekström P (2005) Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa). J Comp Neurol 492:251–262PubMedCrossRefGoogle Scholar
  37. Petie R, Garm A, Nilsson DE (2011) Visual control of steering in the box jellyfish Tripedalia cystophora. J Exp Biol 214(Pt 17):2809–2815PubMedCrossRefGoogle Scholar
  38. Plickert G, Schneider B (2004) Neuropeptides and photic behavior in Cnidaria. Hydrobiology 530(531):49–57CrossRefGoogle Scholar
  39. Ruggieri RD, Pierobon P, Kass-Simon G (2004) Pacemaker activity in hydra is modulated by glycine receptor ligands. Comp Biochem Physiol A 138:193–202Google Scholar
  40. Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol 133(4):357–367CrossRefGoogle Scholar
  41. Satterlie RA, Nolen TG (2001) Why do cubomedusae have only four swim pacemakers? J Exp Biol 204(Pt 8):1413–1419PubMedGoogle Scholar
  42. Schall JD (2001) Neural basis of deciding, choosing and acting. Nat Rev Neurosci 2(1):33–42PubMedCrossRefGoogle Scholar
  43. Skogh C, Garm A, Nilsson DE, Ekström P (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 267(12):1391–1405PubMedCrossRefGoogle Scholar
  44. Stemmler EA, Peguero B, Bruns EA, Dickinson PS, Christie AE (2007) Identification, physiological actions, and distribution of TPSGFLGMRamide: a novel tachykinin-related peptide from the midgut and stomatogastric nervous system of cancer crabs. J Neurochem 101(5):1351–1366PubMedCrossRefGoogle Scholar
  45. Su CY, Menuz K, Reisert J, Carlson JR (2012) Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492(7427):66–71PubMedCrossRefGoogle Scholar
  46. Szabo TM, Chen R, Goeritz ML, Maloney RT, Tang LS, Li L, Marder E (2011) Distribution and physiological effects of B-type allatostatins (myoinhibitory peptides, MIPs) in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 519(13):2658–2676PubMedCrossRefGoogle Scholar
  47. Vilim FS, Sasaki K, Rybak J, Alexeeva V, Cropper EC, Jing J, Orekhova IV, Brezina V, Price D, Romanova EV, Rubakhin SS, Hatcher N, Sweedler JV, Weiss KR (2010) Distinct mechanisms produce functionally complementary actions of neuropeptides that are structurally related but derived from different precursors. J Neurosci 30(1):131–147PubMedCrossRefGoogle Scholar
  48. Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5(10):747–757PubMedCrossRefGoogle Scholar
  49. Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108(1):17–40PubMedCrossRefGoogle Scholar
  50. Wu JS, Vilim FS, Hatcher NG, Due MR, Sweedler JV, Weiss KR, Jing J (2010) Composite modulatory feedforward loop contributes to the establishment of a network state. J Neurophysiol 103(4):2174–2184PubMedCrossRefGoogle Scholar
  51. Yamasu T, Yoshida M (1976) Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res 170(3):325–339PubMedCrossRefGoogle Scholar
  52. Yatsu N (1917) Notes on the physiology of Carybdea rastonii. J Coll Sci 40(3):1–12Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Marine Biological SectionUniversity of CopenhagenCopenhagenDenmark
  2. 2.Section of Ecology and EvolutionUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations