Journal of Comparative Physiology A

, Volume 199, Issue 11, pp 1037–1052

Insect–machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori

  • Ryohei Kanzaki
  • Ryo Minegishi
  • Shigehiro Namiki
  • Noriyasu Ando
Review

Abstract

To elucidate the dynamic information processing in a brain underlying adaptive behavior, it is necessary to understand the behavior and corresponding neural activities. This requires animals which have clear relationships between behavior and corresponding neural activities. Insects are precisely such animals and one of the adaptive behaviors of insects is high-accuracy odor source orientation. The most direct way to know the relationships between neural activity and behavior is by recording neural activities in a brain from freely behaving insects. There is also a method to give stimuli mimicking the natural environment to tethered insects allowing insects to walk or fly at the same position. In addition to these methods an ‘insect–machine hybrid system’ is proposed, which is another experimental system meeting the conditions necessary for approaching the dynamic processing in the brain of insects for generating adaptive behavior. This insect–machine hybrid system is an experimental system which has a mobile robot as its body. The robot is controlled by the insect through its behavior or the neural activities recorded from the brain. As we can arbitrarily control the motor output of the robot, we can intervene at the relationship between the insect and the environmental conditions.

Keywords

Brain Adaptive behavior Moths Pheromones Orientation 

Abbreviations

AL

Antennal lobe

BE

Brief excitation

BMHS

Brain–machine hybrid system

CN

Cervical nerve

FF

Flip-flop activity

ΔILPC

Delta area of inferior lateral protocerebrum

LAL

Lateral accessory lobe

LPC

Lateral protocerebrum

MGC

Macroglomerular complex

NMN

Neck motor neuron

OG

Ordinary glomerulus

ORN

Olfactory receptor neuron

PC

Protocerebrum

PN

Projection neuron

SMP

Superior medial protocerebrum

VPC

Ventral protocerebrum

References

  1. Ando N, Emoto S, Kanzaki R (2013) Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. Bioinspir Biomim 8(1):016008. doi:10.1088/1748-3182/8/1/016008 PubMedCrossRefGoogle Scholar
  2. Baker TC (1990) Upwind flight and casting flight: complementary phasic and tonic system used for location of sex pheromone sources by male moth. In: Døving KB (ed) Proceedings of the tenth international symposium on olfaction and taste. Oslo, Norway, pp 18–25Google Scholar
  3. Baker TC, Kuenen LPS (1982) Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216:424–426PubMedCrossRefGoogle Scholar
  4. Baker TC, Willis MA, Phelan PL (1984) Optomotor anemotaxis polarizes self-steered zigzagging in flying moths. Physiol Entomol 9:365–376CrossRefGoogle Scholar
  5. Berry RP, Ibbotson MR (2010) A three-dimensional atlas of the honeybee neck. PLoS One 5(5):e10771. doi:10.1371/journal.pone.0010771 PubMedCrossRefGoogle Scholar
  6. Butala J, Arkles A, Gray JR (2007) EMG spike time difference based feedback control. Conf Proc IEEE Eng Med Biol Soc 2007:6130–6133. doi:10.1109/IEMBS.2007.4353748 PubMedGoogle Scholar
  7. Butenandt VA, Beckmann R, Stamm D, Hecker E (1959) Uber den sexual-lockstoff des seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284Google Scholar
  8. Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34:854–866. doi:10.1007/s10886-008-9484-5 PubMedCrossRefGoogle Scholar
  9. Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173:385–399PubMedCrossRefGoogle Scholar
  10. Christensen TA, Waldrop BR, Hildebrand JG (1998) Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons. J Neurosci 18:5999–6008PubMedGoogle Scholar
  11. Diorio C, Mavoori J (2003) Computer electronics meet animal brains. Computer 36:69–75CrossRefGoogle Scholar
  12. Dombrowski UJ, Milde JJ, Wendler G (1990) Visual control of compensatory head movements in the sphinx moth. In: Popov AV (ed) Sensory systems and communication in arthropods. Birkhäuser Basel, pp 127–133Google Scholar
  13. Eaton JL (1974) Nervous system of the head and thorax of the adult tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). Int J Insect Morphol Embryol 3:47–66CrossRefGoogle Scholar
  14. Ejaz N, Peterson KD, Krapp HG (2011) An experimental platform to study the closed-loop performance of brain-machine interfaces. J Vis Exp 49:e1677. doi:10.3791/1677 Google Scholar
  15. Emoto S, Ando N, Takahashi H, Kanzaki R (2007) Insect-controlled robot—evaluation of adaptation ability. J Robot Mechatron 19:436–443Google Scholar
  16. Farkas SR, Shorey HH (1972) Chemical trail-following by flying insects: a mechanism for orientation to a distant odor source. Science 178:67–68PubMedCrossRefGoogle Scholar
  17. Fukushima R, Kanzaki R (2009) Modular subdivision of mushroom bodies by Kenyon cells in the silkmoth. J Comp Neurol 513:315–330PubMedCrossRefGoogle Scholar
  18. Gatellier L, Nagao T, Kanzaki R (2004) Serotonin modifies the sensitivity of the male silkmoth to pheromone. J Exp Biol 207:2487–2496. doi:10.1242/jeb.01035 PubMedCrossRefGoogle Scholar
  19. Gilbert C, Gronenberg W, Strausfeld NJ (1995) Oculomotor control in Calliphorid flies: head movement during activation and inhibition of neck motor neurons corroborate neuroanatomical predictions. J Comp Neurol 361:285–297PubMedCrossRefGoogle Scholar
  20. Gray JR, Pawlowski V, Willis MA (2002) A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J Neurosci Methods 120:211–223PubMedCrossRefGoogle Scholar
  21. Gronenberg W, Strausfeld NJ (1991) Descending pathway connecting the male specific visual system of flies to the neck and flight motor. J Comp Physiol A 169:413–426PubMedCrossRefGoogle Scholar
  22. Gronenberg W, Milde JJ, Strausfeld NJ (1995) Oculomotor control in calliphorid flies: organization of descending neurons responding to visual stimuli. J Comp Neurol 361:267–284PubMedCrossRefGoogle Scholar
  23. Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tache F, Said I, Durier V, Canonge S, Ame JM, Detrain C, Correll N, Martinoli A, Mondada F, Siegwart R, Deneubourg JL (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science 318:1155–1158PubMedCrossRefGoogle Scholar
  24. Haupt SS, Sakurai T, Namiki S, Kazawa T, Kanzaki R (2009) Olfactory information processing in moths Chapter 3. In: Mennini A (ed) The neurobiology of Olfaction. CRC Press, San Francisco, pp 71–112CrossRefGoogle Scholar
  25. Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430(7001):781–785. doi:s10.1038/Nature02787 PubMedCrossRefGoogle Scholar
  26. Hill ES, Iwano M, Gatellier L, Kanzaki R (2002) Morphology and physiology of the serotonin-immunoreactive putative antennal lobe feedback neuron in the male silkmoth Bombyx mori. Chem Senses 27:475–483PubMedCrossRefGoogle Scholar
  27. Hill ES, Okada K, Kanzaki R (2003) Visualization of modulatory effects of serotonin in the silkmoth antennal lobe. J Exp Biol 206:345–352. doi:10.1242/jeb.00080 PubMedCrossRefGoogle Scholar
  28. Hung YS, van Kleef JP, Ibbotson MR (2011) Visual response properties of neck motor neurons in the honeybee. J Comp Physiol A 197:1173–1187. doi:10.1007/s00359-011-0679-9 CrossRefGoogle Scholar
  29. Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6(7):e173. doi:10.1371/journal.pbio.0060173 PubMedCrossRefGoogle Scholar
  30. Ikeno H, Kazawa T, Namiki S, Miyamoto D, SatoY, Haupt S, Nishikawa I, Kanzaki R (2012) Development of a scheme and tools to construct a standard moth brain for neural network simulations. Comput Intell Neurosci. doi:10.1155/2012/795291
  31. Ishida H, Hayashi K, Takakusaki M, Nakamoto T, Moriizumi T, Kanzaki R (1996) Odour-source localization system mimicking behaviour of silkworm moth. Sens Actuat A 51:225–230CrossRefGoogle Scholar
  32. Iwano M, Kanzaki R (2005) Immunocytochemical identification of neuroactive substances in the antennal lobe of the male silkworm moth Bombyx mori. Zool Sci 22:199–211PubMedCrossRefGoogle Scholar
  33. Iwano M, Hill ES, Mori A, Mishima T, Mishima T, Ito K, Kanzaki R (2010) Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain. J Comp Neurol 518:366–388. doi:10.1002/cne.22224 PubMedCrossRefGoogle Scholar
  34. Kaissling KE (1971) Insect olfaction. In: Beidler LM (ed) Handbook of sensory physiology IV. Springer, Berlin, pp 351–431Google Scholar
  35. Kanzaki R (1998) Coordination of wing motion and walking suggests common control of zigzag motor program in a male silkworm moth. J Comp Physiol A 182(3):267–276. doi:10.1007/s003590050177 CrossRefGoogle Scholar
  36. Kanzaki R, Mishima T (1996) Pheromone-triggered ‘flipflopping’ neural signals correlate with activities of neck motor neurons of a male moth, Bombyx mori. Zool Sci 13:79–87CrossRefGoogle Scholar
  37. Kanzaki R, Sugi N, Shibuya T (1992) Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci 9:515–527Google Scholar
  38. Kanzaki R, Ikeda S, Shibuya T (1994) Morphological and physiological properties of pheromone-triggered flipflopping descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A 175:1–14CrossRefGoogle Scholar
  39. Kanzaki R, Soo K, Seki Y, Wada S (2003) Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth. Chem Senses 28:113–130PubMedCrossRefGoogle Scholar
  40. Kanzaki R, Nagasawa S, Shimoyama I (2005) Neural basis of odor-source searching behavior in insect brain systems evaluated with a mobile robot. Chem Senses 30(suppl 1):i285–i286. doi:10.1093/chemse/bjh226 PubMedCrossRefGoogle Scholar
  41. Kanzaki R, Ando N, Sakurai T, Kazawa T (2008) Understanding and reconstruction of the mobiligence of insects employing multiscale biological approaches and robotics. Adv Robot 22:1605–1628. doi:10.1163/156855308x368949 CrossRefGoogle Scholar
  42. Kazawa T, Namiki S, Fukushima R, Terada M, Soo K, Kanzaki R (2009) Constancy and variability of glomerular organization in the antennal lobe of the silkmoth. Cell Tissue Res 336:119–136. doi:10.1007/s00441-009-0756-3 PubMedCrossRefGoogle Scholar
  43. Kennedy JS (1940) The visual responses of flying mosquitoes. Proc Zool Soc Lond 109:221–242Google Scholar
  44. Kennedy JS (1983) Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol Entomol 8:109–120CrossRefGoogle Scholar
  45. Kennedy JS, Marsh D (1974) Pheromone-regulated anemotaxis in flying moths. Science 184:999–1001PubMedCrossRefGoogle Scholar
  46. Kloppenburg P, Ferns D, Mercer AR (1999) Serotonin enhances central olfactory neuron responses to female sex pheromone in the male sphinx moth Manduca sexta. J Neurosci 19:8172–8181PubMedGoogle Scholar
  47. Koontz MA, Schneider D (1987) Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res 249:39–50CrossRefGoogle Scholar
  48. Kowadlo G, Russell RA (2008) Robot odor localization: a taxonomy and survey. Int J Robot Res 27:869–894. doi:10.1177/0278364908095118 CrossRefGoogle Scholar
  49. Kramer E (1975) Orientation of the male silkmoth to the sex attractant bombykol. In: Denton DA, Coghlan J (eds) Mechanisms in insect olfaction. Academic Press, New York, pp 329–335Google Scholar
  50. Kramer E (1986) Turbulent diffusion and pheromone triggered anemotaxis. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 59–67Google Scholar
  51. Kuwana Y, Nagasawa S, Shimoyama I, Kanzaki R (1999) Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosensens Bioelectron 14:195–202CrossRefGoogle Scholar
  52. Mafra-Neto A, Cardé RT (1994) Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144CrossRefGoogle Scholar
  53. Mafra-Neto A, Cardé RT (1996) Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 20:117–133CrossRefGoogle Scholar
  54. Marin EC, Jefferies GSXE, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255PubMedCrossRefGoogle Scholar
  55. Melano T (2011) Insect-machine interfacing. The University of Arizona, DissertationGoogle Scholar
  56. Mercer AR, Hayashi JH, Hildebrand JG (1995) Modulatory effects of 5-hydroxytryptamine on voltage-activated currents in cultured antennal lobe neurons of the sphinx moth Manduca sexta. J Exp Biol 198:613–627PubMedGoogle Scholar
  57. Mercer AR, Kloppenburg P, Hildebrand JG (1996) Serotonin-induced changes in the excitability of cultured antennal-lobe neurons of the sphinx moth Manduca sexta. J Comp Physiol A 178:21–31PubMedCrossRefGoogle Scholar
  58. Milde JJ, Seyan HS, Strausfeld NJ (1987) The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238CrossRefGoogle Scholar
  59. Minegishi R, Takashima A, Kurabayashi D, Kanzaki R (2012) Construction of a brain–machine hybrid system to evaluate adaptability of an insect. Robot Auton Syst 60:692–699. doi:10.1016/j.robot.2011.06.012 CrossRefGoogle Scholar
  60. Mishima T, Kanzaki R (1998) Coordination of flipflopping neural signals and head turning during pheromone-mediated walking in a male silkworm moth Bombyx mori. J Comp Physiol A 183:273–282CrossRefGoogle Scholar
  61. Mishima T, Kanzaki R (1999) Physiological and morphological characterization of olfactory descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A 184:143–160CrossRefGoogle Scholar
  62. Mizunami M, Okada R, Li Y, Strausfeld NJ (1998) Mushroom bodies of the cockroach: activity and identities of neurons recorded in freely moving animals. J Comp Neurol 402:501–519PubMedCrossRefGoogle Scholar
  63. Mizunami M, Yokohari F, Takahata M (1999) Exploration into the adaptive design of the arthropod “Microbrain”. Zool Sci 16(5):703–709. doi:10.2108/Zsj.16.703 CrossRefGoogle Scholar
  64. Mizunami M, Yokohari F, Takahata M (2004) Further exploration into the adaptive design of the arthropod “microbrain”: I. Sensory and memory-processing systems. Zool Sci 21(12):1141–1151. doi:10.2108/Zsj.21.1141 PubMedCrossRefGoogle Scholar
  65. Murlis J, Jones CD (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6:71–86CrossRefGoogle Scholar
  66. Murlis J, Elkinton JS, Cardé RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532CrossRefGoogle Scholar
  67. Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642. doi:10.1126/science.1106267 PubMedCrossRefGoogle Scholar
  68. Namiki S, Kanzaki R (2011) Heterogeneity in dendritic morphology of moth antennal lobe projection neurons. J Comp Neurol 519(17):3367–3386PubMedCrossRefGoogle Scholar
  69. Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A 194:501–515. doi:10.1007/s00359-008-0325-3 CrossRefGoogle Scholar
  70. Namiki S, Takaguchi M, Seki Y, Kazawa T, Fukushima R, Iwatsuki C, Kanzaki R (2013) Concentric zones for pheromone components in the mushroom body calyx of the moth brain. J Comp Neurol (in press)Google Scholar
  71. Nishino H, Yamashita S, Yamazaki Y, Nishikawa M, Yokohari F, Mizunami M (2003) Projection neurons originating from thermo- and hygrosensory glomeruli in the antennal lobe of the cockroach. J Comp Neurol 455:40–55. doi:10.1002/cne.10450 PubMedCrossRefGoogle Scholar
  72. Obara Y (1979) Bombyx mori mating dance: an essential in locating the female. Appl Entomol Zool 14:130–132Google Scholar
  73. Ochieng SA, Park KC, Baker TC (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188:325–333. doi:10.1007/s00359-002-0308-8 CrossRefGoogle Scholar
  74. Okada R, Ikeda J, Mizunami M (1999) Sensory responses and movement-related activities in extrinsic neurons on the cockroach mushroom bodies. J Comp Physiol A 185:115–129CrossRefGoogle Scholar
  75. Olberg RM (1983) Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth, Bombyx mori. J Comp Physiol A 152:297–307CrossRefGoogle Scholar
  76. Parsons MM, Krapp HG, Laughlin SB (2006) A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol 209:4464–4474PubMedCrossRefGoogle Scholar
  77. Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral neuroscience. J Neurosci Methods 167:127–139. doi:10.1016/j.jneumeth.2007.07.019 PubMedCrossRefGoogle Scholar
  78. Russell RA (2001) Tracking chemical plumes in constrained environments. Robotica 19:451–458. doi:10.1017/S0263574700003283 CrossRefGoogle Scholar
  79. Sakurai T, Nakagawaga T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101:16653–16658. doi:10.1073/pnas.0407596101 PubMedCrossRefGoogle Scholar
  80. Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kobayashi I, Sezutsu H, Tamura T, Kanzaki R (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7:e1002115. doi:10.1371/journal.pgen.1002115 PubMedCrossRefGoogle Scholar
  81. Schneider D, Kaissling KE (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare Bildungen und innerer Bau. Zool Jahrb Abt Anat Ontog Tiere 76:223–250Google Scholar
  82. Schröter U, Wilson SLJ, Srinivasan MV, Ibbotson MR (2007) The morphology, physiology and function of suboesophageal neck motor neurons in the honeybee. J Comp Physiol A 193:289–304. doi:10.1007/s00359-006-0182-x CrossRefGoogle Scholar
  83. Seki Y, Kanzaki R (2008) Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori. J Comp Neurol 506:93–107. doi:10.1002/cne.21528 PubMedCrossRefGoogle Scholar
  84. Seki Y, Aonuma H, Kanzaki R (2005) Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry. J Comp Neurol 481:340–351. doi:10.1002/cne.20392 PubMedCrossRefGoogle Scholar
  85. Shepheard P (1973) Control of head movement in the locust, Schistocerca gregaria. J Exp Biol 60:735–767Google Scholar
  86. Shepheard P (1974) Musculature Innervation of the neck of the desert locust, Schistocerca gregaria (Forskal). J Morph 139:439–464CrossRefGoogle Scholar
  87. Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythrocephala. I. Muscles and motor neurons. J Comp Physiol A 160:205–224CrossRefGoogle Scholar
  88. Takalo J, Piironen A, Honkanen A, Lempea M, Aikio M, Tuukkanen T, Vahasoyrinki M (2012) A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments. Sci Rep 2. doi:10.1038/Srep00324
  89. Takasaki T, Namiki S, Kanzaki R (2012) Use of Bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol A 198:295–307. doi:10.1007/s00359-011-0708-8 CrossRefGoogle Scholar
  90. Tanaka NK, Awasaki T, Shimada T, Ito K (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457. doi:10.1016/j.cub.2004.03.006 PubMedCrossRefGoogle Scholar
  91. Vergassola M, Villermaux E, Shraiman BI (2007) ‘Infotaxis’ as a strategy for searching without gradients. Nature 445:406–409. doi:10.1038/nature05464 PubMedCrossRefGoogle Scholar
  92. Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212PubMedCrossRefGoogle Scholar
  93. Vickers NJ, Baker TC (1992) Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae). J Insect Behav 5:669–687CrossRefGoogle Scholar
  94. Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci USA 91:5756–5760PubMedCrossRefGoogle Scholar
  95. Vickers NJ, Baker TC (1996) Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J Comp Physiol A 178:831–847CrossRefGoogle Scholar
  96. Wada S, Kanzaki R (2005) Neural control mechanisms of the pheromone-triggered programmed behavior in male silkmoths revealed by double-labeling of descending interneurons and a motor neuron. J Comp Neurol 484:168–182. doi:10.1002/cne.20452 PubMedCrossRefGoogle Scholar
  97. Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J Comp Physiol A 161:23–32PubMedCrossRefGoogle Scholar
  98. Webb B, Harrison RR, Willis MA (2004) Sensorimotor control of navigation in arthropod and artificial systems. Arthropod Struct Dev 33:301–329PubMedCrossRefGoogle Scholar
  99. Wertz A, Haag J, Borst A (2012) Integration of binocular optic flow in cervical neck motor neurons of the fly. J Comp Physiol A 198:655–668. doi:10.1007/s00359-012-0737-y CrossRefGoogle Scholar
  100. Willis MA, Arbas EA (1991) Odor-modulated upwind flight of the sphinx moth, Manduca sexta L. J Comp Physiol A 169:427–440PubMedCrossRefGoogle Scholar
  101. Willis MA, Baker TC (1987) Comparison of manoeuvres used by walking versus flying Grapholita molesta males during pheromone-mediated upwind movement. J Insect Physiol 33:875–883CrossRefGoogle Scholar
  102. Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241PubMedCrossRefGoogle Scholar
  103. Yamagata T, Sakurai T, Uchino K, Sezutsu H, Tamura T, Kanzaki R (2008) GFP labeling of neurosecretory cells with the GAL4/UAS system in the silkmoth brain enables selective intracellular staining of neurons. Zool Sci 25:509–516. doi:10.2108/zsj.25.509 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ryohei Kanzaki
    • 1
  • Ryo Minegishi
    • 1
    • 2
  • Shigehiro Namiki
    • 1
    • 3
  • Noriyasu Ando
    • 1
  1. 1.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
  2. 2.Department of Mechanical and Control EngineeringTokyo Institute of TechnologyTokyoJapan
  3. 3.HHMI Janelia Farm Research CampusAshburnUSA

Personalised recommendations